{"title":"基于能量分析的全机械化开采工作面煤柱优化与应用","authors":"Shiyi Huang, Zhixue Li","doi":"10.54097/ije.v3i3.011","DOIUrl":null,"url":null,"abstract":"Based on the theory of energy dissipation, a numerical model of goaf excavation was established by FLAC3D based on the backflow channel of Heilong Coal Industry 2202. The dissipative energy distribution characteristics of coal pillars with different widths were studied, and the dissipative energy evolution law of surrounding rock of goaf roadway was analyzed. With the increase of the width of coal pillar, the width of elastic core zone is positively correlated with the bearing capacity. The peak value of dissipated energy density decreases with the increase of the width of coal pillar, and the concentration degree and region of dissipated energy density on the side of coal pillar are greater than that on the side of solid coal pillar. The project is applied to Heilong 2201 working face, and the optimum width of coal pillar and its supporting scheme are given. The practice results show that when the width of coal pillar is 5m, the deformation of surrounding rock can be effectively controlled and the demand for safe and efficient production can be met.","PeriodicalId":510211,"journal":{"name":"International Journal of Energy","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Application of Coal Pillar in Fully Mechanized Mining Face based on Energy Analysis\",\"authors\":\"Shiyi Huang, Zhixue Li\",\"doi\":\"10.54097/ije.v3i3.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the theory of energy dissipation, a numerical model of goaf excavation was established by FLAC3D based on the backflow channel of Heilong Coal Industry 2202. The dissipative energy distribution characteristics of coal pillars with different widths were studied, and the dissipative energy evolution law of surrounding rock of goaf roadway was analyzed. With the increase of the width of coal pillar, the width of elastic core zone is positively correlated with the bearing capacity. The peak value of dissipated energy density decreases with the increase of the width of coal pillar, and the concentration degree and region of dissipated energy density on the side of coal pillar are greater than that on the side of solid coal pillar. The project is applied to Heilong 2201 working face, and the optimum width of coal pillar and its supporting scheme are given. The practice results show that when the width of coal pillar is 5m, the deformation of surrounding rock can be effectively controlled and the demand for safe and efficient production can be met.\",\"PeriodicalId\":510211,\"journal\":{\"name\":\"International Journal of Energy\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/ije.v3i3.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/ije.v3i3.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization and Application of Coal Pillar in Fully Mechanized Mining Face based on Energy Analysis
Based on the theory of energy dissipation, a numerical model of goaf excavation was established by FLAC3D based on the backflow channel of Heilong Coal Industry 2202. The dissipative energy distribution characteristics of coal pillars with different widths were studied, and the dissipative energy evolution law of surrounding rock of goaf roadway was analyzed. With the increase of the width of coal pillar, the width of elastic core zone is positively correlated with the bearing capacity. The peak value of dissipated energy density decreases with the increase of the width of coal pillar, and the concentration degree and region of dissipated energy density on the side of coal pillar are greater than that on the side of solid coal pillar. The project is applied to Heilong 2201 working face, and the optimum width of coal pillar and its supporting scheme are given. The practice results show that when the width of coal pillar is 5m, the deformation of surrounding rock can be effectively controlled and the demand for safe and efficient production can be met.