使用 NSGA-III 和熵加权 TOPSIS 方法优化生物质能源结构设计

Hao Chen, Chihua Lu, Lie Feng, Zhien Liu, Yi Sun, Wan Chen
{"title":"使用 NSGA-III 和熵加权 TOPSIS 方法优化生物质能源结构设计","authors":"Hao Chen, Chihua Lu, Lie Feng, Zhien Liu, Yi Sun, Wan Chen","doi":"10.1177/16878132231220351","DOIUrl":null,"url":null,"abstract":"Multi-objective optimization is always a difficult and hot problem for the static and dynamic performance and lightweight optimization design of a body-in-white (BIW). In this regard, a hybrid method coupled with NSGA-III and entropy weighted TOPSIS methods was put forward here. Effects of each design variable on the BIW performance was studied by means of the contribution method so as to optimize various design variables. Further, an experimental design was carried out by means of a radial basis function model to approximate each performance index of the automotive body. On the base of that, a comprehensive method where the Pareto frontier is searched by means of NSGA-III while the optimal solution is selected by means of the entropy weighted TOPSIS method was proposed based on lightweight, static and dynamic performances to analyze BIW performances to determine the contradictory optimal solution among various BIW factors. Afterward, our numerical verifications demonstrate that the BIW performances are improved significantly so that it can be feasible to optimize static and dynamic BIW performances and the lightweight performance of the BIW can be guaranteed accordingly.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural optimization design of BIW using NSGA-III and entropy weighted TOPSIS methods\",\"authors\":\"Hao Chen, Chihua Lu, Lie Feng, Zhien Liu, Yi Sun, Wan Chen\",\"doi\":\"10.1177/16878132231220351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimization is always a difficult and hot problem for the static and dynamic performance and lightweight optimization design of a body-in-white (BIW). In this regard, a hybrid method coupled with NSGA-III and entropy weighted TOPSIS methods was put forward here. Effects of each design variable on the BIW performance was studied by means of the contribution method so as to optimize various design variables. Further, an experimental design was carried out by means of a radial basis function model to approximate each performance index of the automotive body. On the base of that, a comprehensive method where the Pareto frontier is searched by means of NSGA-III while the optimal solution is selected by means of the entropy weighted TOPSIS method was proposed based on lightweight, static and dynamic performances to analyze BIW performances to determine the contradictory optimal solution among various BIW factors. Afterward, our numerical verifications demonstrate that the BIW performances are improved significantly so that it can be feasible to optimize static and dynamic BIW performances and the lightweight performance of the BIW can be guaranteed accordingly.\",\"PeriodicalId\":502561,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231220351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231220351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标优化一直是白车身静态、动态性能和轻量化优化设计的难点和热点问题。为此,本文提出了一种结合 NSGA-III 和熵权 TOPSIS 方法的混合方法。通过贡献法研究了各设计变量对白车身性能的影响,从而优化了各种设计变量。此外,还通过径向基函数模型进行了实验设计,以逼近汽车车身的各项性能指标。在此基础上,提出了一种综合方法,即通过 NSGA-III 搜索帕累托前沿,同时通过熵权 TOPSIS 法选择最优解,以轻量化、静态和动态性能为基础分析白车身性能,从而确定白车身各因素之间的矛盾最优解。随后,我们的数值验证表明,白车身性能得到了显著改善,因此优化白车身的静态和动态性能是可行的,白车身的轻量化性能也得到了相应的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural optimization design of BIW using NSGA-III and entropy weighted TOPSIS methods
Multi-objective optimization is always a difficult and hot problem for the static and dynamic performance and lightweight optimization design of a body-in-white (BIW). In this regard, a hybrid method coupled with NSGA-III and entropy weighted TOPSIS methods was put forward here. Effects of each design variable on the BIW performance was studied by means of the contribution method so as to optimize various design variables. Further, an experimental design was carried out by means of a radial basis function model to approximate each performance index of the automotive body. On the base of that, a comprehensive method where the Pareto frontier is searched by means of NSGA-III while the optimal solution is selected by means of the entropy weighted TOPSIS method was proposed based on lightweight, static and dynamic performances to analyze BIW performances to determine the contradictory optimal solution among various BIW factors. Afterward, our numerical verifications demonstrate that the BIW performances are improved significantly so that it can be feasible to optimize static and dynamic BIW performances and the lightweight performance of the BIW can be guaranteed accordingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信