E. Afanasenko, I. Seifullina, E.V. Martsinko, V. Dyakonenko, S. Shishkina
{"title":"阴离子配位菲罗啉酒石酸盐的选择性、合成、晶体结构和生物活性","authors":"E. Afanasenko, I. Seifullina, E.V. Martsinko, V. Dyakonenko, S. Shishkina","doi":"10.19261/cjm.2023.1121","DOIUrl":null,"url":null,"abstract":"Novel supramolecular cation-anionic coordination compound (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O was synthesised and characterised by the X-ray, elemental, IR- and Hirshfeld surface analysis. It was established that original synthesis method and ability of 1,10-phenanthroline to be protonated promotes the formation of [(μ-O){Ge2(OH)(μ-Tart)2}2]4- anion. In this anion, dimeric fragments are connected by a bridging oxygen atom, and the coordination polyhedra around the germanium atoms adopt a distorted trigonal bipyramidal geometry. The cations HPhen+ serve as effective building blocks, strengthening the overall structure through classical hydrogen bonding and additional π-π stacking interactions. Biological screening of (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O demonstrated its remarkable enzyme-effector and antimicrobial activity. The compounds' efficacy can be attributed to the synergistic effects of the independent cations and anions, as well as the ability of protonated 1,10-phenanthroline to inhibit metal ions in enzymes and form stacking interactions with specific protein components. These characteristics make such compounds highly effective and promising antibacterial agents that minimize the risk of developing bacterial resistance.","PeriodicalId":9922,"journal":{"name":"Chemistry Journal of Moldova","volume":"59 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selectivity, synthesis, crystal structure and biological activity of the anion-coordination phenanthrolinium tartratogermanate\",\"authors\":\"E. Afanasenko, I. Seifullina, E.V. Martsinko, V. Dyakonenko, S. Shishkina\",\"doi\":\"10.19261/cjm.2023.1121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel supramolecular cation-anionic coordination compound (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O was synthesised and characterised by the X-ray, elemental, IR- and Hirshfeld surface analysis. It was established that original synthesis method and ability of 1,10-phenanthroline to be protonated promotes the formation of [(μ-O){Ge2(OH)(μ-Tart)2}2]4- anion. In this anion, dimeric fragments are connected by a bridging oxygen atom, and the coordination polyhedra around the germanium atoms adopt a distorted trigonal bipyramidal geometry. The cations HPhen+ serve as effective building blocks, strengthening the overall structure through classical hydrogen bonding and additional π-π stacking interactions. Biological screening of (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O demonstrated its remarkable enzyme-effector and antimicrobial activity. The compounds' efficacy can be attributed to the synergistic effects of the independent cations and anions, as well as the ability of protonated 1,10-phenanthroline to inhibit metal ions in enzymes and form stacking interactions with specific protein components. These characteristics make such compounds highly effective and promising antibacterial agents that minimize the risk of developing bacterial resistance.\",\"PeriodicalId\":9922,\"journal\":{\"name\":\"Chemistry Journal of Moldova\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Journal of Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19261/cjm.2023.1121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Journal of Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19261/cjm.2023.1121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Selectivity, synthesis, crystal structure and biological activity of the anion-coordination phenanthrolinium tartratogermanate
Novel supramolecular cation-anionic coordination compound (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O was synthesised and characterised by the X-ray, elemental, IR- and Hirshfeld surface analysis. It was established that original synthesis method and ability of 1,10-phenanthroline to be protonated promotes the formation of [(μ-O){Ge2(OH)(μ-Tart)2}2]4- anion. In this anion, dimeric fragments are connected by a bridging oxygen atom, and the coordination polyhedra around the germanium atoms adopt a distorted trigonal bipyramidal geometry. The cations HPhen+ serve as effective building blocks, strengthening the overall structure through classical hydrogen bonding and additional π-π stacking interactions. Biological screening of (HPhen)4[(μ-O){Ge2(OH) (μ-Tart)2}2]·9H2O demonstrated its remarkable enzyme-effector and antimicrobial activity. The compounds' efficacy can be attributed to the synergistic effects of the independent cations and anions, as well as the ability of protonated 1,10-phenanthroline to inhibit metal ions in enzymes and form stacking interactions with specific protein components. These characteristics make such compounds highly effective and promising antibacterial agents that minimize the risk of developing bacterial resistance.
期刊介绍:
"Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry" seeks to publish experimental or theoretical research results of outstanding significance and timeliness in all fields of Chemistry, including Industrial and Ecological Chemistry. The main goal of this edition is strengthening the Chemical Society of Moldova, following development of research in Moldovan chemical institutions and promotion of their collaboration with international chemical community. Manuscripts are welcome from all countries.