{"title":"用于 C 波段应用的天线阵列馈电抛物面反射器的混合自适应波束成形方法","authors":"Sheetal Bawane, D. K. Panda","doi":"10.14313/jamris-1-2023-6","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the design of a parabolic reflector fed through a patch antenna array feed to enhance its directivity and radiation properties. Adaptive beam formers steer and alter an array’s beam pattern to increase signal reception and minimize interference. Weight selection is a critical difficulty in achieving low SLL and beam width. Low Side Lobe Level [SLL]and narrow beam reduce antenna radiation and reception. Adjusting the weights reduces SLL and tilts the nulls. Adaptive beam formers are successful signal processors if their array output converges to the required signal. Smart antenna weights can be determined using any window function. Half Power Beam Width and SLL could be used to explore different algorithms. Both must be low for excellent smart antenna performance. In noisy settings, ACLMS and CLMS create narrow beams and side lobes. AANGD offers more control than CLMS and ACLMS. The blend of CLMS and ACLMS is more effective at signal convergence than CLMS and AANGD. It presents an alternative to the conventionally used horn-based feed network for C-band applications such as satellite communication. Broadside radiation patterns and 4x4 circular patch antenna arrays are used in the proposed design. 1400 aperture illumination is provided by the array’s feed parabolic reflector, whose F/D ratio is 0.36. The proposed design’s efficacy is assessed using simulation analysis.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"39 5","pages":"45 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Adaptive Beamforming Approach for Antenna Array Fed Parabolic Reflector for C-Band Applications\",\"authors\":\"Sheetal Bawane, D. K. Panda\",\"doi\":\"10.14313/jamris-1-2023-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents the design of a parabolic reflector fed through a patch antenna array feed to enhance its directivity and radiation properties. Adaptive beam formers steer and alter an array’s beam pattern to increase signal reception and minimize interference. Weight selection is a critical difficulty in achieving low SLL and beam width. Low Side Lobe Level [SLL]and narrow beam reduce antenna radiation and reception. Adjusting the weights reduces SLL and tilts the nulls. Adaptive beam formers are successful signal processors if their array output converges to the required signal. Smart antenna weights can be determined using any window function. Half Power Beam Width and SLL could be used to explore different algorithms. Both must be low for excellent smart antenna performance. In noisy settings, ACLMS and CLMS create narrow beams and side lobes. AANGD offers more control than CLMS and ACLMS. The blend of CLMS and ACLMS is more effective at signal convergence than CLMS and AANGD. It presents an alternative to the conventionally used horn-based feed network for C-band applications such as satellite communication. Broadside radiation patterns and 4x4 circular patch antenna arrays are used in the proposed design. 1400 aperture illumination is provided by the array’s feed parabolic reflector, whose F/D ratio is 0.36. The proposed design’s efficacy is assessed using simulation analysis.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"39 5\",\"pages\":\"45 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris-1-2023-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris-1-2023-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Hybrid Adaptive Beamforming Approach for Antenna Array Fed Parabolic Reflector for C-Band Applications
Abstract This paper presents the design of a parabolic reflector fed through a patch antenna array feed to enhance its directivity and radiation properties. Adaptive beam formers steer and alter an array’s beam pattern to increase signal reception and minimize interference. Weight selection is a critical difficulty in achieving low SLL and beam width. Low Side Lobe Level [SLL]and narrow beam reduce antenna radiation and reception. Adjusting the weights reduces SLL and tilts the nulls. Adaptive beam formers are successful signal processors if their array output converges to the required signal. Smart antenna weights can be determined using any window function. Half Power Beam Width and SLL could be used to explore different algorithms. Both must be low for excellent smart antenna performance. In noisy settings, ACLMS and CLMS create narrow beams and side lobes. AANGD offers more control than CLMS and ACLMS. The blend of CLMS and ACLMS is more effective at signal convergence than CLMS and AANGD. It presents an alternative to the conventionally used horn-based feed network for C-band applications such as satellite communication. Broadside radiation patterns and 4x4 circular patch antenna arrays are used in the proposed design. 1400 aperture illumination is provided by the array’s feed parabolic reflector, whose F/D ratio is 0.36. The proposed design’s efficacy is assessed using simulation analysis.
期刊介绍:
Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing