Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin
{"title":"微型卫星平面合成孔径雷达(SAR)天线的结构设计","authors":"Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin","doi":"10.5140/jass.2023.40.4.225","DOIUrl":null,"url":null,"abstract":"This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.","PeriodicalId":44366,"journal":{"name":"Journal of Astronomy and Space Sciences","volume":"118 1-2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Design of Planar Synthetic Aperture Radar (SAR) Antenna for Microsatellites\",\"authors\":\"Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin\",\"doi\":\"10.5140/jass.2023.40.4.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.\",\"PeriodicalId\":44366,\"journal\":{\"name\":\"Journal of Astronomy and Space Sciences\",\"volume\":\"118 1-2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5140/jass.2023.40.4.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5140/jass.2023.40.4.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Structural Design of Planar Synthetic Aperture Radar (SAR) Antenna for Microsatellites
This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.
期刊介绍:
JASS aims for the promotion of global awareness and understanding of space science and related applications. Unlike other journals that focus either on space science or on space technologies, it intends to bridge the two communities of space science and technologies, by providing opportunities to exchange ideas and viewpoints in a single journal. Topics suitable for publication in JASS include researches in the following fields: space astronomy, solar physics, magnetospheric and ionospheric physics, cosmic ray, space weather, and planetary sciences; space instrumentation, satellite dynamics, geodesy, spacecraft control, and spacecraft navigation. However, the topics covered by JASS are not restricted to those mentioned above as the journal also encourages submission of research results in all other branches related to space science and technologies. Even though JASS was established on the heritage and achievements of the Korean space science community, it is now open to the worldwide community, while maintaining a high standard as a leading international journal. Hence, it solicits papers from the international community with a vision of global collaboration in the fields of space science and technologies.