微型卫星平面合成孔径雷达(SAR)天线的结构设计

IF 0.6 Q4 ASTRONOMY & ASTROPHYSICS
Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin
{"title":"微型卫星平面合成孔径雷达(SAR)天线的结构设计","authors":"Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin","doi":"10.5140/jass.2023.40.4.225","DOIUrl":null,"url":null,"abstract":"This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.","PeriodicalId":44366,"journal":{"name":"Journal of Astronomy and Space Sciences","volume":"118 1-2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Design of Planar Synthetic Aperture Radar (SAR) Antenna for Microsatellites\",\"authors\":\"Dong-Guk Kim, Sung-Woo Park, Jong-Pil Kim, Hwa-Young Jung, Yura Lee, Eung-Noh You, Hee Keun Cho, Jin Hyo An, Goo-Hwan Shin\",\"doi\":\"10.5140/jass.2023.40.4.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.\",\"PeriodicalId\":44366,\"journal\":{\"name\":\"Journal of Astronomy and Space Sciences\",\"volume\":\"118 1-2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5140/jass.2023.40.4.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5140/jass.2023.40.4.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了应用于微型卫星的平面合成孔径雷达(SAR)天线的结构设计。在微型卫星应用中,合成孔径雷达天线结构必须轻巧、扁平,并能承受发射环境。为了满足这些条件,我们使用铝合金设计了新型天线结构。我们对准静态负载、随机振动和冲击负载进行了结构分析,以验证其在发射环境中的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Design of Planar Synthetic Aperture Radar (SAR) Antenna for Microsatellites
This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astronomy and Space Sciences
Journal of Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
1.30
自引率
20.00%
发文量
0
审稿时长
12 weeks
期刊介绍: JASS aims for the promotion of global awareness and understanding of space science and related applications. Unlike other journals that focus either on space science or on space technologies, it intends to bridge the two communities of space science and technologies, by providing opportunities to exchange ideas and viewpoints in a single journal. Topics suitable for publication in JASS include researches in the following fields: space astronomy, solar physics, magnetospheric and ionospheric physics, cosmic ray, space weather, and planetary sciences; space instrumentation, satellite dynamics, geodesy, spacecraft control, and spacecraft navigation. However, the topics covered by JASS are not restricted to those mentioned above as the journal also encourages submission of research results in all other branches related to space science and technologies. Even though JASS was established on the heritage and achievements of the Korean space science community, it is now open to the worldwide community, while maintaining a high standard as a leading international journal. Hence, it solicits papers from the international community with a vision of global collaboration in the fields of space science and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信