Sharifa B. Utamuradova, K. Daliev, S. Daliev, Uktam K. Erugliev
{"title":"含钐杂质硅中深电平的电容光谱学","authors":"Sharifa B. Utamuradova, K. Daliev, S. Daliev, Uktam K. Erugliev","doi":"10.26565/2312-4334-2023-4-39","DOIUrl":null,"url":null,"abstract":"The effect of thermal treatment on the behavior of samarium atoms introduced into silicon during the growth process was studied using the method of transient capacitive deep-level spectroscopy (DLTS). It has been shown that various high-temperature treatments lead to the activation of samarium atoms in the bulk of n-Si and the formation of deep levels. The energy spectrum of deep levels arising during heat treatments has been determined. The dependence of the efficiency of formation of these levels in n‑Si on the processing temperature has been studied. It was found that the higher the content of samarium atoms in the bulk of silicon at the same high-temperature treatment temperature, the higher the concentration of the deep level EC–0.39 eV. From this, we can conclude that the EC–0.39 eV level is associated with the activation of samarium atoms in the n-Si volume.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"21 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitive Spectroscopy of Deep Levels in Silicon with Samarium Impurity\",\"authors\":\"Sharifa B. Utamuradova, K. Daliev, S. Daliev, Uktam K. Erugliev\",\"doi\":\"10.26565/2312-4334-2023-4-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of thermal treatment on the behavior of samarium atoms introduced into silicon during the growth process was studied using the method of transient capacitive deep-level spectroscopy (DLTS). It has been shown that various high-temperature treatments lead to the activation of samarium atoms in the bulk of n-Si and the formation of deep levels. The energy spectrum of deep levels arising during heat treatments has been determined. The dependence of the efficiency of formation of these levels in n‑Si on the processing temperature has been studied. It was found that the higher the content of samarium atoms in the bulk of silicon at the same high-temperature treatment temperature, the higher the concentration of the deep level EC–0.39 eV. From this, we can conclude that the EC–0.39 eV level is associated with the activation of samarium atoms in the n-Si volume.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"21 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-4-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-4-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
利用瞬态电容深电平光谱法(DLTS)研究了热处理对硅生长过程中引入的钐原子行为的影响。研究表明,各种高温处理会导致正硅中的钐原子活化并形成深电平。热处理过程中产生的深层能谱已经确定。研究了在正硅中形成这些电平的效率与处理温度的关系。研究发现,在相同的高温处理温度下,硅体中钐原子的含量越高,深电平 EC-0.39 eV 的浓度就越高。由此我们可以得出结论,EC-0.39 eV 电平与正硅体积中钐原子的活化有关。
Capacitive Spectroscopy of Deep Levels in Silicon with Samarium Impurity
The effect of thermal treatment on the behavior of samarium atoms introduced into silicon during the growth process was studied using the method of transient capacitive deep-level spectroscopy (DLTS). It has been shown that various high-temperature treatments lead to the activation of samarium atoms in the bulk of n-Si and the formation of deep levels. The energy spectrum of deep levels arising during heat treatments has been determined. The dependence of the efficiency of formation of these levels in n‑Si on the processing temperature has been studied. It was found that the higher the content of samarium atoms in the bulk of silicon at the same high-temperature treatment temperature, the higher the concentration of the deep level EC–0.39 eV. From this, we can conclude that the EC–0.39 eV level is associated with the activation of samarium atoms in the n-Si volume.