M. Isaev, Tokhirjon U. Atamirzaev, Mukhammadsodik N. Mamatkulov, Uralboy T. Asatov, Makhmudjon A. Tulametov
{"title":"硅化铬的迁移性和导电性研究","authors":"M. Isaev, Tokhirjon U. Atamirzaev, Mukhammadsodik N. Mamatkulov, Uralboy T. Asatov, Makhmudjon A. Tulametov","doi":"10.26565/2312-4334-2023-4-22","DOIUrl":null,"url":null,"abstract":"The temperature dependence of the mobility in chromium silicides in the temperature range of 80 ÷ 780 K was studied. The mobility gradually increases to a temperature of 350 K, then it saturates in the temperature range of 350 ÷ 450K, then gradually decreases. It is shown that the mobility depends on the scatter of charge of carriers on a crystal lattice, impurity ions, dislocations, and silicide inclusions. The frequency of collisions is proportional to T3/2, and the mobility varies with temperature as T-3/2. At high temperatures, phonons may be considered as “frozen” defects and collision frequency with its will proportional to T. The temperature dependences of the electrical conductivity in this temperature range were also studied. Areas with negative and positive temperature coefficients are revealed.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Mobility and Electrical Conductivity of Chromium Silicide\",\"authors\":\"M. Isaev, Tokhirjon U. Atamirzaev, Mukhammadsodik N. Mamatkulov, Uralboy T. Asatov, Makhmudjon A. Tulametov\",\"doi\":\"10.26565/2312-4334-2023-4-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature dependence of the mobility in chromium silicides in the temperature range of 80 ÷ 780 K was studied. The mobility gradually increases to a temperature of 350 K, then it saturates in the temperature range of 350 ÷ 450K, then gradually decreases. It is shown that the mobility depends on the scatter of charge of carriers on a crystal lattice, impurity ions, dislocations, and silicide inclusions. The frequency of collisions is proportional to T3/2, and the mobility varies with temperature as T-3/2. At high temperatures, phonons may be considered as “frozen” defects and collision frequency with its will proportional to T. The temperature dependences of the electrical conductivity in this temperature range were also studied. Areas with negative and positive temperature coefficients are revealed.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-4-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-4-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
研究了硅化铬在 80 ÷ 780 K 温度范围内迁移率的温度依赖性。迁移率在温度为 350 K 时逐渐增大,然后在 350 ÷ 450 K 的温度范围内达到饱和,接着逐渐减小。研究表明,迁移率取决于载流子在晶格、杂质离子、位错和硅化物夹杂物上的电荷散射。碰撞频率与 T3/2 成正比,迁移率随温度的变化为 T-3/2。在高温下,声子可被视为 "冻结 "缺陷,其碰撞频率与 T 成正比。结果显示了具有负温度系数和正温度系数的区域。
Study of the Mobility and Electrical Conductivity of Chromium Silicide
The temperature dependence of the mobility in chromium silicides in the temperature range of 80 ÷ 780 K was studied. The mobility gradually increases to a temperature of 350 K, then it saturates in the temperature range of 350 ÷ 450K, then gradually decreases. It is shown that the mobility depends on the scatter of charge of carriers on a crystal lattice, impurity ions, dislocations, and silicide inclusions. The frequency of collisions is proportional to T3/2, and the mobility varies with temperature as T-3/2. At high temperatures, phonons may be considered as “frozen” defects and collision frequency with its will proportional to T. The temperature dependences of the electrical conductivity in this temperature range were also studied. Areas with negative and positive temperature coefficients are revealed.