麦克斯韦纳米流体在施加于磁盘的倾斜磁场上的热泳和活化能效应的数值研究

IF 1 Q3 PHYSICS, MULTIDISCIPLINARY
Dudekula Dastagiri Babu, S. Venkateswarlu, E. K. Reddy
{"title":"麦克斯韦纳米流体在施加于磁盘的倾斜磁场上的热泳和活化能效应的数值研究","authors":"Dudekula Dastagiri Babu, S. Venkateswarlu, E. K. Reddy","doi":"10.26565/2312-4334-2023-4-43","DOIUrl":null,"url":null,"abstract":"Numerical model is conducted to investigate the behavior of an incompressible Maxwell nanofluid model flow on a convectively stretched surface, considering the effects of thermophoresis and an inclined magnetic field. The system, originally formulated as a set of partial differential equations, is transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are solved using the Runge-Kutta-Fehlberg method in conjunction with the shooting technique. The obtained physical parameters from the derived system are presented and discussed through graphical representations. The numerical process is assessed by comparing the results with existing literature under various limiting scenarios, demonstrating a high level of proficiency. The key findings of this study indicate that the velocity field decreases as the fluid parameters increase, while the fluid temperature diminishes accordingly. Additionally, the heat transfer rate decreases with increasing fluid and thermophoresis parameters, but it increases with Biot and Prandtl numbers.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"55 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Thermophoresis and Activation Energy Effects on Maxwell Nano Fluid Over an Inclined Magnetic Field Applied to a Disk\",\"authors\":\"Dudekula Dastagiri Babu, S. Venkateswarlu, E. K. Reddy\",\"doi\":\"10.26565/2312-4334-2023-4-43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical model is conducted to investigate the behavior of an incompressible Maxwell nanofluid model flow on a convectively stretched surface, considering the effects of thermophoresis and an inclined magnetic field. The system, originally formulated as a set of partial differential equations, is transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are solved using the Runge-Kutta-Fehlberg method in conjunction with the shooting technique. The obtained physical parameters from the derived system are presented and discussed through graphical representations. The numerical process is assessed by comparing the results with existing literature under various limiting scenarios, demonstrating a high level of proficiency. The key findings of this study indicate that the velocity field decreases as the fluid parameters increase, while the fluid temperature diminishes accordingly. Additionally, the heat transfer rate decreases with increasing fluid and thermophoresis parameters, but it increases with Biot and Prandtl numbers.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-4-43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-4-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到热泳和倾斜磁场的影响,建立了一个数值模型来研究不可压缩麦克斯韦纳米流体模型在对流拉伸表面上的流动行为。该系统最初是由一组偏微分方程构成的,利用相似变换将其转换为常微分方程系统。利用 Runge-Kutta-Fehlberg 方法并结合射击技术对所得到的方程进行求解。从推导出的系统中获得的物理参数通过图形表示法进行展示和讨论。在各种限制情况下,通过将结果与现有文献进行比较,对数值计算过程进行了评估,结果表明其熟练程度很高。本研究的主要结论表明,速度场随着流体参数的增加而减小,同时流体温度也相应降低。此外,热传导率随流体和热泳参数的增加而降低,但随 Biot 和 Prandtl 数的增加而升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of Thermophoresis and Activation Energy Effects on Maxwell Nano Fluid Over an Inclined Magnetic Field Applied to a Disk
Numerical model is conducted to investigate the behavior of an incompressible Maxwell nanofluid model flow on a convectively stretched surface, considering the effects of thermophoresis and an inclined magnetic field. The system, originally formulated as a set of partial differential equations, is transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are solved using the Runge-Kutta-Fehlberg method in conjunction with the shooting technique. The obtained physical parameters from the derived system are presented and discussed through graphical representations. The numerical process is assessed by comparing the results with existing literature under various limiting scenarios, demonstrating a high level of proficiency. The key findings of this study indicate that the velocity field decreases as the fluid parameters increase, while the fluid temperature diminishes accordingly. Additionally, the heat transfer rate decreases with increasing fluid and thermophoresis parameters, but it increases with Biot and Prandtl numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
East European Journal of Physics
East European Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
25.00%
发文量
58
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信