OCViTnet:脉搏波学习用于医疗服务机器人的无袖带血压估计

Yuhui Cen, Jingjing Luo, Hongbo Wang, Li Chen, Xing Zhu, Jingchun Luo
{"title":"OCViTnet:脉搏波学习用于医疗服务机器人的无袖带血压估计","authors":"Yuhui Cen, Jingjing Luo, Hongbo Wang, Li Chen, Xing Zhu, Jingchun Luo","doi":"10.1109/ROBIO58561.2023.10354835","DOIUrl":null,"url":null,"abstract":"Blood pressure (BP) estimation through cuffless approaches is gaining prominence in precision healthcare, and the emergence of robotic medical services adds impetus to this trend with enhanced diagnostic capabilities. In our endeavor to enable medical service robots for cuffless BP self-estimation, we propose OCViTnet, a deep-learning network model grounded in pulse wave analysis (PWA). The model introduces a novel waveform processing architecture: an omni-scale convolution subnet captures single-period waveform characteristics, the Vision Transformer subnet extracts multi-period waveform features, and a regressor fuses phenotypic information with pulse wave features and performs BP regression. Experimental results perform exceptionally well in non-contact BP estimation from forehead imaging photoplethysmography. Additionally, this paper pioneers the utilization of the radial artery pulse wave for BP estimation. Leveraging the British Hypertension Society standard, our approach yields notable results, assessing the pulse diagnosis robot’s BP estimation performance at grade C/B (systolic/diastolic BP). This effort advances the potential of cuffless BP estimation in pulse diagnosis robotics and underscores the practical viability of our proposed intelligent methodology based on PWA.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"83 3","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OCViTnet: Pulse Wave Learning for Cuffless Blood Pressure Estimation of Medical Service Robots\",\"authors\":\"Yuhui Cen, Jingjing Luo, Hongbo Wang, Li Chen, Xing Zhu, Jingchun Luo\",\"doi\":\"10.1109/ROBIO58561.2023.10354835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blood pressure (BP) estimation through cuffless approaches is gaining prominence in precision healthcare, and the emergence of robotic medical services adds impetus to this trend with enhanced diagnostic capabilities. In our endeavor to enable medical service robots for cuffless BP self-estimation, we propose OCViTnet, a deep-learning network model grounded in pulse wave analysis (PWA). The model introduces a novel waveform processing architecture: an omni-scale convolution subnet captures single-period waveform characteristics, the Vision Transformer subnet extracts multi-period waveform features, and a regressor fuses phenotypic information with pulse wave features and performs BP regression. Experimental results perform exceptionally well in non-contact BP estimation from forehead imaging photoplethysmography. Additionally, this paper pioneers the utilization of the radial artery pulse wave for BP estimation. Leveraging the British Hypertension Society standard, our approach yields notable results, assessing the pulse diagnosis robot’s BP estimation performance at grade C/B (systolic/diastolic BP). This effort advances the potential of cuffless BP estimation in pulse diagnosis robotics and underscores the practical viability of our proposed intelligent methodology based on PWA.\",\"PeriodicalId\":505134,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"83 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO58561.2023.10354835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过无袖带方法估测血压(BP)在精准医疗领域日益突出,而机器人医疗服务的出现则通过增强诊断能力为这一趋势增添了动力。为了让医疗服务机器人能够进行无袖带血压自测,我们提出了基于脉搏波分析(PWA)的深度学习网络模型 OCViTnet。该模型引入了一种新颖的波形处理架构:全尺度卷积子网捕捉单周期波形特征,视觉变换器子网提取多周期波形特征,而回归器则将表型信息与脉搏波特征融合在一起,并执行血压回归。实验结果表明,通过前额成像光敏血压计进行非接触式血压估算的效果非常好。此外,本文还开创性地利用桡动脉脉搏波估测血压。利用英国高血压学会的标准,我们的方法取得了显著的成果,评估了脉搏诊断机器人在 C/B 级(收缩压/舒张压)的血压估计性能。这项工作推进了脉搏诊断机器人无袖带血压估算的潜力,并强调了我们提出的基于 PWA 的智能方法的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OCViTnet: Pulse Wave Learning for Cuffless Blood Pressure Estimation of Medical Service Robots
Blood pressure (BP) estimation through cuffless approaches is gaining prominence in precision healthcare, and the emergence of robotic medical services adds impetus to this trend with enhanced diagnostic capabilities. In our endeavor to enable medical service robots for cuffless BP self-estimation, we propose OCViTnet, a deep-learning network model grounded in pulse wave analysis (PWA). The model introduces a novel waveform processing architecture: an omni-scale convolution subnet captures single-period waveform characteristics, the Vision Transformer subnet extracts multi-period waveform features, and a regressor fuses phenotypic information with pulse wave features and performs BP regression. Experimental results perform exceptionally well in non-contact BP estimation from forehead imaging photoplethysmography. Additionally, this paper pioneers the utilization of the radial artery pulse wave for BP estimation. Leveraging the British Hypertension Society standard, our approach yields notable results, assessing the pulse diagnosis robot’s BP estimation performance at grade C/B (systolic/diastolic BP). This effort advances the potential of cuffless BP estimation in pulse diagnosis robotics and underscores the practical viability of our proposed intelligent methodology based on PWA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信