MSMB-GCN:用于三维人体姿态估计的多尺度多分支融合图卷积网络

Shanshan Ji, Qiwei Meng, Wen Wang, Zheyuan Lin, Te Li, Minhong Wan, Chunlong Zhang, J. Gu
{"title":"MSMB-GCN:用于三维人体姿态估计的多尺度多分支融合图卷积网络","authors":"Shanshan Ji, Qiwei Meng, Wen Wang, Zheyuan Lin, Te Li, Minhong Wan, Chunlong Zhang, J. Gu","doi":"10.1109/ROBIO58561.2023.10354638","DOIUrl":null,"url":null,"abstract":"In human-robot interaction (HRI), human pose estimation is a necessary technology for the robot to perceive the dynamic environment and make interactive actions. Recently, graph convolutional networks (GCNs) have been increasingly used for 2D to 3D pose estimation tasks since the skeleton topologies can be viewed as graph structures. In this paper, we propose a novel graph convolutional network architecture, Multi-scale Multi-branch Fusion Graph Convolutional Networks (MSMB-GCN), for 3D Human Pose Estimation(3D HPE) task. The proposed model consists of multiple GCN blocks with a multi-branch architecture. This multi-branch architecture enables the model to get multi-scale features for human skeletal representations. The group of GCN blocks, which has strong multi-level feature extraction capabilities, allows the model to learn global and local features, lower-level and higher-level features. Experiment results on the HumanPose benchmark demonstrate that our model outperforms the state-of-the-art and ablation studies validate the effectiveness of our approach.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"72 5","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSMB-GCN: Multi-scale Multi-branch Fusion Graph Convolutional Networks for 3D Human Pose Estimation\",\"authors\":\"Shanshan Ji, Qiwei Meng, Wen Wang, Zheyuan Lin, Te Li, Minhong Wan, Chunlong Zhang, J. Gu\",\"doi\":\"10.1109/ROBIO58561.2023.10354638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In human-robot interaction (HRI), human pose estimation is a necessary technology for the robot to perceive the dynamic environment and make interactive actions. Recently, graph convolutional networks (GCNs) have been increasingly used for 2D to 3D pose estimation tasks since the skeleton topologies can be viewed as graph structures. In this paper, we propose a novel graph convolutional network architecture, Multi-scale Multi-branch Fusion Graph Convolutional Networks (MSMB-GCN), for 3D Human Pose Estimation(3D HPE) task. The proposed model consists of multiple GCN blocks with a multi-branch architecture. This multi-branch architecture enables the model to get multi-scale features for human skeletal representations. The group of GCN blocks, which has strong multi-level feature extraction capabilities, allows the model to learn global and local features, lower-level and higher-level features. Experiment results on the HumanPose benchmark demonstrate that our model outperforms the state-of-the-art and ablation studies validate the effectiveness of our approach.\",\"PeriodicalId\":505134,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"72 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO58561.2023.10354638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人机交互(HRI)中,人体姿态估计是机器人感知动态环境并做出交互动作的必要技术。最近,图卷积网络(GCN)被越来越多地用于二维到三维的姿态估计任务,因为骨架拓扑结构可以看作是图结构。本文针对三维人体姿态估计(3D HPE)任务提出了一种新型图卷积网络架构--多尺度多分支融合图卷积网络(MSMB-GCN)。所提出的模型由多个具有多分支架构的 GCN 块组成。这种多分支架构使模型能够获得人体骨骼表征的多尺度特征。GCN 块组具有强大的多级特征提取能力,可让模型学习全局和局部特征、低级和高级特征。HumanPose 基准的实验结果表明,我们的模型优于最先进的模型,而消融研究则验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSMB-GCN: Multi-scale Multi-branch Fusion Graph Convolutional Networks for 3D Human Pose Estimation
In human-robot interaction (HRI), human pose estimation is a necessary technology for the robot to perceive the dynamic environment and make interactive actions. Recently, graph convolutional networks (GCNs) have been increasingly used for 2D to 3D pose estimation tasks since the skeleton topologies can be viewed as graph structures. In this paper, we propose a novel graph convolutional network architecture, Multi-scale Multi-branch Fusion Graph Convolutional Networks (MSMB-GCN), for 3D Human Pose Estimation(3D HPE) task. The proposed model consists of multiple GCN blocks with a multi-branch architecture. This multi-branch architecture enables the model to get multi-scale features for human skeletal representations. The group of GCN blocks, which has strong multi-level feature extraction capabilities, allows the model to learn global and local features, lower-level and higher-level features. Experiment results on the HumanPose benchmark demonstrate that our model outperforms the state-of-the-art and ablation studies validate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信