用对数-分数-有理函数逼近傅里叶算子的勒贝格常数

I. A. Shakirov
{"title":"用对数-分数-有理函数逼近傅里叶算子的勒贝格常数","authors":"I. A. Shakirov","doi":"10.26907/0021-3446-2023-11-75-85","DOIUrl":null,"url":null,"abstract":"The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (non-monotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function\",\"authors\":\"I. A. Shakirov\",\"doi\":\"10.26907/0021-3446-2023-11-75-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (non-monotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.\",\"PeriodicalId\":507800,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/0021-3446-2023-11-75-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2023-11-75-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典傅里叶算子的 Lebesgue 常数由一个取决于三个参数的对数-分数-有理函数均匀逼近;它们是利用对数和有理逼近的特定性质定义的。对具有不确定(非单调)行为的相应残差项进行了严格研究。所获得的近似结果将已知结果加强了两个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function
The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (non-monotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信