使用拟议方法求解非线性偏微分方程

Noor A. Hussein, Najwan Noori Hani
{"title":"使用拟议方法求解非线性偏微分方程","authors":"Noor A. Hussein, Najwan Noori Hani","doi":"10.24297/jam.v22i.9552","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to employ a new method to solve nonlinear differential equations to obtain precise analytical solutions and overcome computation challenges without the need to discretize the domain or assume the presence of a small parameter, where the method demonstrated a quick and highly accurate solving nonlinear partial differential equations with initial conditions, in compared to existing methods. The phases of the proposed method are straightforward to implement, highly precise, and quickly converge to the correct result.","PeriodicalId":502930,"journal":{"name":"JOURNAL OF ADVANCES IN MATHEMATICS","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Proposed Approach to Solve nonlinear Partial Differential Equations\",\"authors\":\"Noor A. Hussein, Najwan Noori Hani\",\"doi\":\"10.24297/jam.v22i.9552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to employ a new method to solve nonlinear differential equations to obtain precise analytical solutions and overcome computation challenges without the need to discretize the domain or assume the presence of a small parameter, where the method demonstrated a quick and highly accurate solving nonlinear partial differential equations with initial conditions, in compared to existing methods. The phases of the proposed method are straightforward to implement, highly precise, and quickly converge to the correct result.\",\"PeriodicalId\":502930,\"journal\":{\"name\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/jam.v22i.9552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ADVANCES IN MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jam.v22i.9552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是采用一种求解非线性微分方程的新方法,以获得精确的解析解,并克服计算难题,而无需将域离散化或假设存在一个小参数,与现有方法相比,该方法展示了快速、高精度地求解带初始条件的非线性偏微分方程的能力。所提方法的各阶段实施简单、精确度高,并能快速收敛到正确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Proposed Approach to Solve nonlinear Partial Differential Equations
The purpose of this research is to employ a new method to solve nonlinear differential equations to obtain precise analytical solutions and overcome computation challenges without the need to discretize the domain or assume the presence of a small parameter, where the method demonstrated a quick and highly accurate solving nonlinear partial differential equations with initial conditions, in compared to existing methods. The phases of the proposed method are straightforward to implement, highly precise, and quickly converge to the correct result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信