计算等价和非等价电子微观状态的新数字方法

Misha shafi,, Saba Javaid, Roohi Zafar, Ahmed Ali Rajput, Muhammad Mustaqeem Zahid, Muhammad Daniyal
{"title":"计算等价和非等价电子微观状态的新数字方法","authors":"Misha shafi,, Saba Javaid, Roohi Zafar, Ahmed Ali Rajput, Muhammad Mustaqeem Zahid, Muhammad Daniyal","doi":"10.53560/ppasa(60-4)670","DOIUrl":null,"url":null,"abstract":"A term symbol is used to describe atomic microstate states, which give the multiplicity and total angular momentum of the atomic state. Russel Sauder coupling scheme is used to generate terms of equivalent and non-equivalent electronic configurations. For equivalent electrons, the terms are calculated using Pauli’s principle, and the number of terms is limited and is calculated by the combination rule. The total possible electrons and total available electrons are used in the combination formula. In case of non-equivalent electrons, the number of terms are found by the permutation rule. The number of terms for equivalent electrons is less than the terms for non-equivalent electrons. The number of possible microstates for p2 and d5  configurations are 15 and 252 respectively. While the number of final microstates for 1p2p and 3d4d configurations are 36 and 100.  In the proposed study, a Python programme was developed that generates the microstate according to filled and half-filled subshell electronic configurations for equivalent, non-equivalent, and combinations of both. Examples of microstates for non-equivalent electrons of configuration 1s2s, sp, sd, ss, 2p3p, pd, pf, 3d4d, df, 4f5f and for equivalent electrons of configuration su, pv, dx, and f y are presented.","PeriodicalId":509771,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Numerical Approach to Calculate Microstates of Equivalent and Non-Equivalent Electrons\",\"authors\":\"Misha shafi,, Saba Javaid, Roohi Zafar, Ahmed Ali Rajput, Muhammad Mustaqeem Zahid, Muhammad Daniyal\",\"doi\":\"10.53560/ppasa(60-4)670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A term symbol is used to describe atomic microstate states, which give the multiplicity and total angular momentum of the atomic state. Russel Sauder coupling scheme is used to generate terms of equivalent and non-equivalent electronic configurations. For equivalent electrons, the terms are calculated using Pauli’s principle, and the number of terms is limited and is calculated by the combination rule. The total possible electrons and total available electrons are used in the combination formula. In case of non-equivalent electrons, the number of terms are found by the permutation rule. The number of terms for equivalent electrons is less than the terms for non-equivalent electrons. The number of possible microstates for p2 and d5  configurations are 15 and 252 respectively. While the number of final microstates for 1p2p and 3d4d configurations are 36 and 100.  In the proposed study, a Python programme was developed that generates the microstate according to filled and half-filled subshell electronic configurations for equivalent, non-equivalent, and combinations of both. Examples of microstates for non-equivalent electrons of configuration 1s2s, sp, sd, ss, 2p3p, pd, pf, 3d4d, df, 4f5f and for equivalent electrons of configuration su, pv, dx, and f y are presented.\",\"PeriodicalId\":509771,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(60-4)670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(60-4)670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

术语符号用于描述原子微态,给出原子态的倍率和总角动量。Russel Sauder 耦合方案用于生成等价和非等价电子构型的项。对于等效电子,项是利用保利原理计算的,而项的数量是有限的,并通过组合规则计算。组合公式中使用的是可能电子总数和可用电子总数。在非等价电子的情况下,项数由排列规则计算得出。等价电子的项数少于非等价电子的项数。p2 和 d5 配置的可能微态数分别为 15 和 252。而 1p2p 和 3d4d 配置的最终微态数量分别为 36 和 100。 在拟议的研究中,开发了一个 Python 程序,可根据等效、非等效和两者的组合的填充和半填充子壳电子构型生成微态。文中举例说明了配置为 1s2s、sp、sd、ss、2p3p、pd、pf、3d4d、df、4f5f 的非等效电子以及配置为 su、pv、dx 和 f y 的等效电子的微态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Numerical Approach to Calculate Microstates of Equivalent and Non-Equivalent Electrons
A term symbol is used to describe atomic microstate states, which give the multiplicity and total angular momentum of the atomic state. Russel Sauder coupling scheme is used to generate terms of equivalent and non-equivalent electronic configurations. For equivalent electrons, the terms are calculated using Pauli’s principle, and the number of terms is limited and is calculated by the combination rule. The total possible electrons and total available electrons are used in the combination formula. In case of non-equivalent electrons, the number of terms are found by the permutation rule. The number of terms for equivalent electrons is less than the terms for non-equivalent electrons. The number of possible microstates for p2 and d5  configurations are 15 and 252 respectively. While the number of final microstates for 1p2p and 3d4d configurations are 36 and 100.  In the proposed study, a Python programme was developed that generates the microstate according to filled and half-filled subshell electronic configurations for equivalent, non-equivalent, and combinations of both. Examples of microstates for non-equivalent electrons of configuration 1s2s, sp, sd, ss, 2p3p, pd, pf, 3d4d, df, 4f5f and for equivalent electrons of configuration su, pv, dx, and f y are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信