Дмитрий Евгеньевич Соколовский, Владимир Николаевич Некрасов, Сергей Александрович Землянский, Сергей Владимирович Аксёнов
{"title":"评估使用 spacy 和 deeppavlov 库工具从 covid-19 患者检查描述中提取命名实体的情况","authors":"Дмитрий Евгеньевич Соколовский, Владимир Николаевич Некрасов, Сергей Александрович Землянский, Сергей Владимирович Аксёнов","doi":"10.18799/29495407/2023/2/27","DOIUrl":null,"url":null,"abstract":"Актуальность. Определяется необходимостью выделения значимых признаков из электронных медицинских записей для автоматизации оценки состояния больных. Цель. Оценка возможности выявления именованных сущностей в электронных описаниях осмотров пациентов с COVID-19 с помощью модели BERT из библиотек SpaCy и DeepPavlov. Методы. Глубокое обучение, статистические методы. Результаты и выводы. Выполнено исследование настройки нейросетевых моделей BERT из библиотек SpaCy и DeepPavlov для аннотирования документов «Осмотр пациентов лечащим врачом» с целью выделения следующих предикторов оценки состояния пациентов: температура, артериальное давление, частота дыхательных движений, частота сердечных сокращений и сатурация. Настройка и оценка эффективности архитектур производилась на основе разметки 340 обезличенных электронных медицинских записей пациентов, болевших COVID-19, полученных с помощью сервиса SibMED Data Clinical Repository. Показано, что настройка моделей на количестве около 150 размеченных документов позволяет определять указанные предикторы в таких текстах с точностью (Precision) 85–98 % и с полнотой (Recall) 77–98 % в зависимости от предиктора. Метрики качества работы архитектур из выбранных библиотек различались незначительно. Отмечено, что итеративное расширение обучающей выборки в результате эксплуатации моделей с последующей донастройкой приводит к повышению результативности моделей.","PeriodicalId":504856,"journal":{"name":"Известия ТПУ. Промышленная кибернетика.","volume":"199 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ОЦЕНКА ИСПОЛЬЗОВАНИЯ ИНСТРУМЕНТОВ БИБЛИОТЕКИ SPACY И DEEPPAVLOV ДЛЯ ЗАДАЧИ ИЗВЛЕЧЕНИЯ ИМЕНОВАННЫХ СУЩНОСТЕЙ ИЗ ОПИСАНИЙ РЕЗУЛЬТАТОВ ОСМОТРОВ ПАЦИЕНТОВ С COVID-19\",\"authors\":\"Дмитрий Евгеньевич Соколовский, Владимир Николаевич Некрасов, Сергей Александрович Землянский, Сергей Владимирович Аксёнов\",\"doi\":\"10.18799/29495407/2023/2/27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Актуальность. Определяется необходимостью выделения значимых признаков из электронных медицинских записей для автоматизации оценки состояния больных. Цель. Оценка возможности выявления именованных сущностей в электронных описаниях осмотров пациентов с COVID-19 с помощью модели BERT из библиотек SpaCy и DeepPavlov. Методы. Глубокое обучение, статистические методы. Результаты и выводы. Выполнено исследование настройки нейросетевых моделей BERT из библиотек SpaCy и DeepPavlov для аннотирования документов «Осмотр пациентов лечащим врачом» с целью выделения следующих предикторов оценки состояния пациентов: температура, артериальное давление, частота дыхательных движений, частота сердечных сокращений и сатурация. Настройка и оценка эффективности архитектур производилась на основе разметки 340 обезличенных электронных медицинских записей пациентов, болевших COVID-19, полученных с помощью сервиса SibMED Data Clinical Repository. Показано, что настройка моделей на количестве около 150 размеченных документов позволяет определять указанные предикторы в таких текстах с точностью (Precision) 85–98 % и с полнотой (Recall) 77–98 % в зависимости от предиктора. Метрики качества работы архитектур из выбранных библиотек различались незначительно. Отмечено, что итеративное расширение обучающей выборки в результате эксплуатации моделей с последующей донастройкой приводит к повышению результативности моделей.\",\"PeriodicalId\":504856,\"journal\":{\"name\":\"Известия ТПУ. Промышленная кибернетика.\",\"volume\":\"199 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Известия ТПУ. Промышленная кибернетика.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18799/29495407/2023/2/27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Известия ТПУ. Промышленная кибернетика.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18799/29495407/2023/2/27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ОЦЕНКА ИСПОЛЬЗОВАНИЯ ИНСТРУМЕНТОВ БИБЛИОТЕКИ SPACY И DEEPPAVLOV ДЛЯ ЗАДАЧИ ИЗВЛЕЧЕНИЯ ИМЕНОВАННЫХ СУЩНОСТЕЙ ИЗ ОПИСАНИЙ РЕЗУЛЬТАТОВ ОСМОТРОВ ПАЦИЕНТОВ С COVID-19
Актуальность. Определяется необходимостью выделения значимых признаков из электронных медицинских записей для автоматизации оценки состояния больных. Цель. Оценка возможности выявления именованных сущностей в электронных описаниях осмотров пациентов с COVID-19 с помощью модели BERT из библиотек SpaCy и DeepPavlov. Методы. Глубокое обучение, статистические методы. Результаты и выводы. Выполнено исследование настройки нейросетевых моделей BERT из библиотек SpaCy и DeepPavlov для аннотирования документов «Осмотр пациентов лечащим врачом» с целью выделения следующих предикторов оценки состояния пациентов: температура, артериальное давление, частота дыхательных движений, частота сердечных сокращений и сатурация. Настройка и оценка эффективности архитектур производилась на основе разметки 340 обезличенных электронных медицинских записей пациентов, болевших COVID-19, полученных с помощью сервиса SibMED Data Clinical Repository. Показано, что настройка моделей на количестве около 150 размеченных документов позволяет определять указанные предикторы в таких текстах с точностью (Precision) 85–98 % и с полнотой (Recall) 77–98 % в зависимости от предиктора. Метрики качества работы архитектур из выбранных библиотек различались незначительно. Отмечено, что итеративное расширение обучающей выборки в результате эксплуатации моделей с последующей донастройкой приводит к повышению результативности моделей.