开发用于实时物体检测的掩码 R-CNN 框架

Hmidani Oussama, Ismaili Alaoui El Mehdi
{"title":"开发用于实时物体检测的掩码 R-CNN 框架","authors":"Hmidani Oussama, Ismaili Alaoui El Mehdi","doi":"10.1109/CommNet60167.2023.10365298","DOIUrl":null,"url":null,"abstract":"In the field of computer vision, achieving real-time object detection through deep learning holds significant importance. Notable strides have been made in real-time object detection methods, particularly due to the rapid progress of deep convolutional neural networks (CNNs) compared to traditional approaches. It has been observed that existing real-time deep CNN-based object detectors face performance limitations, primarily stemming from the architecture of the underlying base network. This study introduces an improved framework for real-time object detection based on the Mask R-CNN model. To address the challenge of enhancing performance under stricter localization criteria, we replace the original Mask R-CNN’s Region of Interest Align (RoIAlign) with spatial interpolation. Additionally, in the final phase of the Mask R-CNN framework, we utilize the depthwise separable convolution architecture from EfficientNet-B7 to construct a classifier for proposal categorization and to adjust bounding boxes for detected objects. Experimental findings on both the COCO dataset and the ImageNet dataset demonstrate that our proposed approach surpasses the original Mask R-CNN in terms of detection accuracy and inference speed. Categorically, our method outperforms the original Mask R-CNN framework by 51.5% on the COCO test set and 46.2% on the ImageNet test set.","PeriodicalId":505542,"journal":{"name":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"21 6","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Mask R-CNN Framework for Real-Time Object Detection\",\"authors\":\"Hmidani Oussama, Ismaili Alaoui El Mehdi\",\"doi\":\"10.1109/CommNet60167.2023.10365298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of computer vision, achieving real-time object detection through deep learning holds significant importance. Notable strides have been made in real-time object detection methods, particularly due to the rapid progress of deep convolutional neural networks (CNNs) compared to traditional approaches. It has been observed that existing real-time deep CNN-based object detectors face performance limitations, primarily stemming from the architecture of the underlying base network. This study introduces an improved framework for real-time object detection based on the Mask R-CNN model. To address the challenge of enhancing performance under stricter localization criteria, we replace the original Mask R-CNN’s Region of Interest Align (RoIAlign) with spatial interpolation. Additionally, in the final phase of the Mask R-CNN framework, we utilize the depthwise separable convolution architecture from EfficientNet-B7 to construct a classifier for proposal categorization and to adjust bounding boxes for detected objects. Experimental findings on both the COCO dataset and the ImageNet dataset demonstrate that our proposed approach surpasses the original Mask R-CNN in terms of detection accuracy and inference speed. Categorically, our method outperforms the original Mask R-CNN framework by 51.5% on the COCO test set and 46.2% on the ImageNet test set.\",\"PeriodicalId\":505542,\"journal\":{\"name\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"volume\":\"21 6\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CommNet60167.2023.10365298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet60167.2023.10365298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉领域,通过深度学习实现实时物体检测具有重要意义。与传统方法相比,深度卷积神经网络(CNN)的进步尤为显著,这使得实时物体检测方法取得了长足进步。据观察,现有的基于深度卷积神经网络的实时物体检测器面临着性能限制,这主要源于底层基础网络的架构。本研究介绍了基于掩码 R-CNN 模型的实时物体检测改进框架。为了应对在更严格的定位标准下提高性能的挑战,我们用空间插值取代了原始 Mask R-CNN 的兴趣区域对齐(RoIAlign)。此外,在掩码 R-CNN 框架的最后阶段,我们利用 EfficientNet-B7 的深度可分离卷积架构来构建提案分类器,并为检测到的对象调整边界框。在 COCO 数据集和 ImageNet 数据集上的实验结果表明,我们提出的方法在检测精度和推理速度方面都超过了原始的 Mask R-CNN。从分类上看,我们的方法在 COCO 测试集上比原始的 Mask R-CNN 框架高出 51.5%,在 ImageNet 测试集上高出 46.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing Mask R-CNN Framework for Real-Time Object Detection
In the field of computer vision, achieving real-time object detection through deep learning holds significant importance. Notable strides have been made in real-time object detection methods, particularly due to the rapid progress of deep convolutional neural networks (CNNs) compared to traditional approaches. It has been observed that existing real-time deep CNN-based object detectors face performance limitations, primarily stemming from the architecture of the underlying base network. This study introduces an improved framework for real-time object detection based on the Mask R-CNN model. To address the challenge of enhancing performance under stricter localization criteria, we replace the original Mask R-CNN’s Region of Interest Align (RoIAlign) with spatial interpolation. Additionally, in the final phase of the Mask R-CNN framework, we utilize the depthwise separable convolution architecture from EfficientNet-B7 to construct a classifier for proposal categorization and to adjust bounding boxes for detected objects. Experimental findings on both the COCO dataset and the ImageNet dataset demonstrate that our proposed approach surpasses the original Mask R-CNN in terms of detection accuracy and inference speed. Categorically, our method outperforms the original Mask R-CNN framework by 51.5% on the COCO test set and 46.2% on the ImageNet test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信