用精简字母构建新的有限几何非二进制 LDPC 码

Zakaria M'rabet, F. Ayoub, Mostafa Belkasmi, Faissal El Bouanani
{"title":"用精简字母构建新的有限几何非二进制 LDPC 码","authors":"Zakaria M'rabet, F. Ayoub, Mostafa Belkasmi, Faissal El Bouanani","doi":"10.1109/CommNet60167.2023.10365279","DOIUrl":null,"url":null,"abstract":"The finite Euclidean and Projective geometry codes are the most known among One-Step Majority-Logic Decodable codes that are Low-Density Parity-Check codes as well. Unfortunately, these codes are rare, and we do not have a great diversity when designing communication systems with a fixed code-length and code rate. Regarding the non-binary Euclidian and projective geometric Codes, each code is restricted to a unique alphabet. To offer a bigger range of possible alphabets for each code, we propose new construction by redefining the incidence vector of the lines of Euclidean and projective geometries over finite fields. This approach leads to an enrichment of the class of EG and PG codes. An error performance study of some new codes has been carried out and shows good results.","PeriodicalId":505542,"journal":{"name":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"386 4-6","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of New Finite Geometry Non-Binary LDPC Codes With Reduced Alphabets\",\"authors\":\"Zakaria M'rabet, F. Ayoub, Mostafa Belkasmi, Faissal El Bouanani\",\"doi\":\"10.1109/CommNet60167.2023.10365279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite Euclidean and Projective geometry codes are the most known among One-Step Majority-Logic Decodable codes that are Low-Density Parity-Check codes as well. Unfortunately, these codes are rare, and we do not have a great diversity when designing communication systems with a fixed code-length and code rate. Regarding the non-binary Euclidian and projective geometric Codes, each code is restricted to a unique alphabet. To offer a bigger range of possible alphabets for each code, we propose new construction by redefining the incidence vector of the lines of Euclidean and projective geometries over finite fields. This approach leads to an enrichment of the class of EG and PG codes. An error performance study of some new codes has been carried out and shows good results.\",\"PeriodicalId\":505542,\"journal\":{\"name\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"volume\":\"386 4-6\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CommNet60167.2023.10365279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet60167.2023.10365279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限欧几里得编码和射影几何编码是一步多逻辑可解码编码中最著名的编码,它们也是低密度奇偶校验编码。遗憾的是,这些编码并不多见,而且在设计具有固定码长和码率的通信系统时,我们的编码种类并不多。至于非二进制欧几里得码和投影几何码,每种码都仅限于一种字母。为了给每种编码提供更多可能的字母,我们提出了新的构造,即重新定义有限域上欧几里得和投影几何线的入射向量。这种方法丰富了 EG 和 PG 编码的种类。我们对一些新编码进行了误差性能研究,结果显示良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of New Finite Geometry Non-Binary LDPC Codes With Reduced Alphabets
The finite Euclidean and Projective geometry codes are the most known among One-Step Majority-Logic Decodable codes that are Low-Density Parity-Check codes as well. Unfortunately, these codes are rare, and we do not have a great diversity when designing communication systems with a fixed code-length and code rate. Regarding the non-binary Euclidian and projective geometric Codes, each code is restricted to a unique alphabet. To offer a bigger range of possible alphabets for each code, we propose new construction by redefining the incidence vector of the lines of Euclidean and projective geometries over finite fields. This approach leads to an enrichment of the class of EG and PG codes. An error performance study of some new codes has been carried out and shows good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信