来自 α+βu+γv+δuv+ηu2+θv2+λu2v+μuv2+νu2v2- 常环码的 Fq 上量子码

M. Sabiri, Bassou Aouijil
{"title":"来自 α+βu+γv+δuv+ηu2+θv2+λu2v+μuv2+νu2v2- 常环码的 Fq 上量子码","authors":"M. Sabiri, Bassou Aouijil","doi":"10.1109/CommNet60167.2023.10365257","DOIUrl":null,"url":null,"abstract":"The goal of this work is the construction of quantum codes over $\\mathbb{F}_{q}$ by using $\\alpha+\\beta u+\\gamma v+\\delta u v+\\eta u^{2}+\\theta v^{2}+\\lambda u^{2} v+$ $\\mu u v^{2}+\\nu u^{2} v^{2}$-constacyclic codes over the ring $R=\\mathbb{F}_{q}+\\mathbb{F}_{q} u+$ $\\mathbb{F}_{q} v+\\mathbb{F}_{q} u v+\\mathbb{F}_{q} u^{2}+\\mathbb{F}_{q} v^{2}+\\mathbb{F}_{q} u^{2} v+\\mathbb{F}_{q} u v^{2}+\\mathbb{F}_{q} u^{2} v^{2}$. We give the structure of $\\alpha+\\beta u+\\gamma v+\\delta u v+\\eta u^{2}+\\theta v^{2}+\\lambda u^{2} v+\\mu u v^{2}+\\nu u^{2} v^{2}$. constacyclic and obtain self-orthogonal codes. We decompose a constacyclic code over $\\mathbb{F}_{q}+\\mathbb{F}_{q} u+\\mathbb{F}_{q} v+\\mathbb{F}_{q} u v+\\mathbb{F}_{q} u^{2}+\\mathbb{F}_{q} v^{2}+$ $\\mathbb{F}_{q} u^{2} v+\\mathbb{F}_{q} u v^{2}+\\mathbb{F}_{q} u^{2} v^{2}$ into constacyclic codes over $\\mathbb{F}_{q}$. This decomposition makes it possible to give the parameters of the corresponding quantum code.","PeriodicalId":505542,"journal":{"name":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum codes over Fq from α+βu+γv+δuv+ηu2+θv2+λu2v+μuv2+νu2v2- constacyclic codes\",\"authors\":\"M. Sabiri, Bassou Aouijil\",\"doi\":\"10.1109/CommNet60167.2023.10365257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is the construction of quantum codes over $\\\\mathbb{F}_{q}$ by using $\\\\alpha+\\\\beta u+\\\\gamma v+\\\\delta u v+\\\\eta u^{2}+\\\\theta v^{2}+\\\\lambda u^{2} v+$ $\\\\mu u v^{2}+\\\\nu u^{2} v^{2}$-constacyclic codes over the ring $R=\\\\mathbb{F}_{q}+\\\\mathbb{F}_{q} u+$ $\\\\mathbb{F}_{q} v+\\\\mathbb{F}_{q} u v+\\\\mathbb{F}_{q} u^{2}+\\\\mathbb{F}_{q} v^{2}+\\\\mathbb{F}_{q} u^{2} v+\\\\mathbb{F}_{q} u v^{2}+\\\\mathbb{F}_{q} u^{2} v^{2}$. We give the structure of $\\\\alpha+\\\\beta u+\\\\gamma v+\\\\delta u v+\\\\eta u^{2}+\\\\theta v^{2}+\\\\lambda u^{2} v+\\\\mu u v^{2}+\\\\nu u^{2} v^{2}$. constacyclic and obtain self-orthogonal codes. We decompose a constacyclic code over $\\\\mathbb{F}_{q}+\\\\mathbb{F}_{q} u+\\\\mathbb{F}_{q} v+\\\\mathbb{F}_{q} u v+\\\\mathbb{F}_{q} u^{2}+\\\\mathbb{F}_{q} v^{2}+$ $\\\\mathbb{F}_{q} u^{2} v+\\\\mathbb{F}_{q} u v^{2}+\\\\mathbb{F}_{q} u^{2} v^{2}$ into constacyclic codes over $\\\\mathbb{F}_{q}$. This decomposition makes it possible to give the parameters of the corresponding quantum code.\",\"PeriodicalId\":505542,\"journal\":{\"name\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"volume\":\"38 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CommNet60167.2023.10365257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet60167.2023.10365257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目标是通过使用 $\alpha+\beta u+\gamma v+\delta u v+\eta u^{2}+\theta v^{2}+\lambda u^{2} v+$ $\mu u v^{2}+\nu u^{2} v^{2}$- 来构建 $\mathbb{F}_{q}$ 上的量子编码。环上的常环码 $R=\mathbb{F}_{q}+\mathbb{F}_{q} u+$ $\mathbb{F}_{q} v+\mathbb{F}_{q} uv+\mathbb{F}_{q} u^{2}+\mathbb{F}_{q} v^{2}+\mathbb{F}_{q} u^{2} v+mathbb{F}_{q} u v^{2}+\mathbb{F}_{q} u^{2} v^{2}$。我们给出了$\alpha+\beta u+\gamma v+\delta u v+\eta u^{2}+\theta v^{2}+\lambda u^{2} v+\mu u v^{2}+\nu u^{2} v^{2}$的结构,并得到了自正交码。我们对 $\mathbb{F}_{q}\+mathbb{F}_{q} u+\mathbb{F}_{q} v+\mathbb{F}_{q} u v+\mathbb{F}_{q} u^{2}+\mathbb{F}_{q} 的constacyclic 编码进行分解。v^{2}+$ $\mathbb{F}_{q} u^{2} v+\mathbb{F}_{q} u v^{2}+\mathbb{F}_{q} u^{2} v^{2}$ 转化为超过 $\mathbb{F}_{q}$ 的 Constacyclic 编码。这种分解使得给出相应量子密码的参数成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum codes over Fq from α+βu+γv+δuv+ηu2+θv2+λu2v+μuv2+νu2v2- constacyclic codes
The goal of this work is the construction of quantum codes over $\mathbb{F}_{q}$ by using $\alpha+\beta u+\gamma v+\delta u v+\eta u^{2}+\theta v^{2}+\lambda u^{2} v+$ $\mu u v^{2}+\nu u^{2} v^{2}$-constacyclic codes over the ring $R=\mathbb{F}_{q}+\mathbb{F}_{q} u+$ $\mathbb{F}_{q} v+\mathbb{F}_{q} u v+\mathbb{F}_{q} u^{2}+\mathbb{F}_{q} v^{2}+\mathbb{F}_{q} u^{2} v+\mathbb{F}_{q} u v^{2}+\mathbb{F}_{q} u^{2} v^{2}$. We give the structure of $\alpha+\beta u+\gamma v+\delta u v+\eta u^{2}+\theta v^{2}+\lambda u^{2} v+\mu u v^{2}+\nu u^{2} v^{2}$. constacyclic and obtain self-orthogonal codes. We decompose a constacyclic code over $\mathbb{F}_{q}+\mathbb{F}_{q} u+\mathbb{F}_{q} v+\mathbb{F}_{q} u v+\mathbb{F}_{q} u^{2}+\mathbb{F}_{q} v^{2}+$ $\mathbb{F}_{q} u^{2} v+\mathbb{F}_{q} u v^{2}+\mathbb{F}_{q} u^{2} v^{2}$ into constacyclic codes over $\mathbb{F}_{q}$. This decomposition makes it possible to give the parameters of the corresponding quantum code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信