Amirhossein Sohrabbeig, Omid Ardakanian, Petr Musilek
{"title":"分解与征服:利用黄土进行多季节趋势分解的时间序列预测","authors":"Amirhossein Sohrabbeig, Omid Ardakanian, Petr Musilek","doi":"10.3390/forecast5040037","DOIUrl":null,"url":null,"abstract":"Over the past few years, there has been growing attention to the Long-Term Time Series Forecasting task and solving its inherent challenges like the non-stationarity of the underlying distribution. Notably, most successful models in this area use decomposition during preprocessing. Yet, much of the recent research has focused on intricate forecasting techniques, often overlooking the critical role of decomposition, which we believe can significantly enhance the performance. Another overlooked aspect is the presence of multiseasonal components in many time series datasets. This study introduced a novel forecasting model that prioritizes multiseasonal trend decomposition, followed by a simple, yet effective forecasting approach. We submit that the right decomposition is paramount. The experimental results from both real-world and synthetic data underscore the efficacy of the proposed model, Decompose&Conquer, for all benchmarks with a great margin, around a 30–50% improvement in the error.","PeriodicalId":508737,"journal":{"name":"Forecasting","volume":"274 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess\",\"authors\":\"Amirhossein Sohrabbeig, Omid Ardakanian, Petr Musilek\",\"doi\":\"10.3390/forecast5040037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few years, there has been growing attention to the Long-Term Time Series Forecasting task and solving its inherent challenges like the non-stationarity of the underlying distribution. Notably, most successful models in this area use decomposition during preprocessing. Yet, much of the recent research has focused on intricate forecasting techniques, often overlooking the critical role of decomposition, which we believe can significantly enhance the performance. Another overlooked aspect is the presence of multiseasonal components in many time series datasets. This study introduced a novel forecasting model that prioritizes multiseasonal trend decomposition, followed by a simple, yet effective forecasting approach. We submit that the right decomposition is paramount. The experimental results from both real-world and synthetic data underscore the efficacy of the proposed model, Decompose&Conquer, for all benchmarks with a great margin, around a 30–50% improvement in the error.\",\"PeriodicalId\":508737,\"journal\":{\"name\":\"Forecasting\",\"volume\":\"274 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/forecast5040037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/forecast5040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess
Over the past few years, there has been growing attention to the Long-Term Time Series Forecasting task and solving its inherent challenges like the non-stationarity of the underlying distribution. Notably, most successful models in this area use decomposition during preprocessing. Yet, much of the recent research has focused on intricate forecasting techniques, often overlooking the critical role of decomposition, which we believe can significantly enhance the performance. Another overlooked aspect is the presence of multiseasonal components in many time series datasets. This study introduced a novel forecasting model that prioritizes multiseasonal trend decomposition, followed by a simple, yet effective forecasting approach. We submit that the right decomposition is paramount. The experimental results from both real-world and synthetic data underscore the efficacy of the proposed model, Decompose&Conquer, for all benchmarks with a great margin, around a 30–50% improvement in the error.