通过信息场理论从嵌套抽样数据中推断证据

Margret Westerkamp, Jakob Roth, Philipp Frank, W. Handley, T. Enßlin
{"title":"通过信息场理论从嵌套抽样数据中推断证据","authors":"Margret Westerkamp, Jakob Roth, Philipp Frank, W. Handley, T. Enßlin","doi":"10.3390/psf2023009019","DOIUrl":null,"url":null,"abstract":"Nested sampling provides an estimate of the evidence of a Bayesian inference problem via probing the likelihood as a function of the enclosed prior volume. However, the lack of precise values of the enclosed prior mass of the samples introduces probing noise, which can hamper high-accuracy determinations of the evidence values as estimated from the likelihood-prior-volume function. We introduce an approach based on information field theory, a framework for non-parametric function reconstruction from data, that infers the likelihood-prior-volume function by exploiting its smoothness and thereby aims to improve the evidence calculation. Our method provides posterior samples of the likelihood-prior-volume function that translate into a quantification of the remaining sampling noise for the evidence estimate, or for any other quantity derived from the likelihood-prior-volume function.","PeriodicalId":506244,"journal":{"name":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","volume":"50 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring Evidence from Nested Sampling Data via Information Field Theory\",\"authors\":\"Margret Westerkamp, Jakob Roth, Philipp Frank, W. Handley, T. Enßlin\",\"doi\":\"10.3390/psf2023009019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nested sampling provides an estimate of the evidence of a Bayesian inference problem via probing the likelihood as a function of the enclosed prior volume. However, the lack of precise values of the enclosed prior mass of the samples introduces probing noise, which can hamper high-accuracy determinations of the evidence values as estimated from the likelihood-prior-volume function. We introduce an approach based on information field theory, a framework for non-parametric function reconstruction from data, that infers the likelihood-prior-volume function by exploiting its smoothness and thereby aims to improve the evidence calculation. Our method provides posterior samples of the likelihood-prior-volume function that translate into a quantification of the remaining sampling noise for the evidence estimate, or for any other quantity derived from the likelihood-prior-volume function.\",\"PeriodicalId\":506244,\"journal\":{\"name\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psf2023009019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 42nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psf2023009019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌套取样通过探测作为所包围的先验量函数的似然,对贝叶斯推理问题的证据进行估计。然而,由于缺乏样本所包围的先验量的精确值,会引入探测噪声,从而阻碍根据似然-先验量函数估算的证据值的高精度确定。我们介绍了一种基于信息场理论的方法,这是一种从数据中重建非参数函数的框架,它通过利用似然-前量函数的平滑性来推导似然-前量函数,从而改进证据计算。我们的方法提供了似然-前量函数的后验样本,可转化为证据估计或从似然-前量函数导出的任何其他量的剩余抽样噪声的量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring Evidence from Nested Sampling Data via Information Field Theory
Nested sampling provides an estimate of the evidence of a Bayesian inference problem via probing the likelihood as a function of the enclosed prior volume. However, the lack of precise values of the enclosed prior mass of the samples introduces probing noise, which can hamper high-accuracy determinations of the evidence values as estimated from the likelihood-prior-volume function. We introduce an approach based on information field theory, a framework for non-parametric function reconstruction from data, that infers the likelihood-prior-volume function by exploiting its smoothness and thereby aims to improve the evidence calculation. Our method provides posterior samples of the likelihood-prior-volume function that translate into a quantification of the remaining sampling noise for the evidence estimate, or for any other quantity derived from the likelihood-prior-volume function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信