基于单眼偏振成像的视觉欺骗识别技术研究

Zhong Lv, Yong Tan, Jianbo Wang, Ye Zhang, Hao Fang, Feng Chen, Zhaonan Huang, Chunxu Jiang, Jianwei Zhou
{"title":"基于单眼偏振成像的视觉欺骗识别技术研究","authors":"Zhong Lv, Yong Tan, Jianbo Wang, Ye Zhang, Hao Fang, Feng Chen, Zhaonan Huang, Chunxu Jiang, Jianwei Zhou","doi":"10.1117/12.3006232","DOIUrl":null,"url":null,"abstract":"Monocular imaging is constrained by limitations in the detection angle, making it susceptible to visual deceptions and making it difficult to obtain accurate shape and structural information of three-dimensional objects. The polarimetric characteristics of scattered light from objects contain information about surface roughness, texture, and structural differences. Therefore, introducing polarization measurements into monocular imaging systems holds significant potential. In this paper, based on polarized 3D imaging theory, the acquisition of surface normal information of objects is achieved by establishing the Stokes vector equation and relating it to Fresnel reflection and the Malus law. Rendering of normals and object surface directions is performed in the 3DsMax software. Ultimately, a monocular visual polarization imaging method is employed to correct the visual deception effect of objects with deceptive features. The results demonstrate that this method exhibits a certain recognition ability for three-dimensional objects composed of multiple planes with deceptive viewing angles.","PeriodicalId":505225,"journal":{"name":"Advanced Imaging and Information Processing","volume":"178 8","pages":"1294208 - 1294208-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on visual deception recognition technology based on monocular polarization imaging\",\"authors\":\"Zhong Lv, Yong Tan, Jianbo Wang, Ye Zhang, Hao Fang, Feng Chen, Zhaonan Huang, Chunxu Jiang, Jianwei Zhou\",\"doi\":\"10.1117/12.3006232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocular imaging is constrained by limitations in the detection angle, making it susceptible to visual deceptions and making it difficult to obtain accurate shape and structural information of three-dimensional objects. The polarimetric characteristics of scattered light from objects contain information about surface roughness, texture, and structural differences. Therefore, introducing polarization measurements into monocular imaging systems holds significant potential. In this paper, based on polarized 3D imaging theory, the acquisition of surface normal information of objects is achieved by establishing the Stokes vector equation and relating it to Fresnel reflection and the Malus law. Rendering of normals and object surface directions is performed in the 3DsMax software. Ultimately, a monocular visual polarization imaging method is employed to correct the visual deception effect of objects with deceptive features. The results demonstrate that this method exhibits a certain recognition ability for three-dimensional objects composed of multiple planes with deceptive viewing angles.\",\"PeriodicalId\":505225,\"journal\":{\"name\":\"Advanced Imaging and Information Processing\",\"volume\":\"178 8\",\"pages\":\"1294208 - 1294208-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Imaging and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单目成像受到探测角度的限制,容易受到视觉欺骗,难以获得三维物体的准确形状和结构信息。物体散射光的偏振特性包含有关表面粗糙度、纹理和结构差异的信息。因此,将偏振测量引入单目成像系统具有巨大的潜力。本文以偏振三维成像理论为基础,通过建立斯托克斯矢量方程,并将其与菲涅尔反射和马鲁斯定律联系起来,实现了物体表面法线信息的获取。法线和物体表面方向的渲染在 3DsMax 软件中进行。最后,采用单眼视觉偏振成像方法来纠正具有欺骗特征的物体的视觉欺骗效应。结果表明,该方法对由多个平面组成的具有欺骗性视角的三维物体具有一定的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on visual deception recognition technology based on monocular polarization imaging
Monocular imaging is constrained by limitations in the detection angle, making it susceptible to visual deceptions and making it difficult to obtain accurate shape and structural information of three-dimensional objects. The polarimetric characteristics of scattered light from objects contain information about surface roughness, texture, and structural differences. Therefore, introducing polarization measurements into monocular imaging systems holds significant potential. In this paper, based on polarized 3D imaging theory, the acquisition of surface normal information of objects is achieved by establishing the Stokes vector equation and relating it to Fresnel reflection and the Malus law. Rendering of normals and object surface directions is performed in the 3DsMax software. Ultimately, a monocular visual polarization imaging method is employed to correct the visual deception effect of objects with deceptive features. The results demonstrate that this method exhibits a certain recognition ability for three-dimensional objects composed of multiple planes with deceptive viewing angles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信