{"title":"对复杂采矿环境中的地质变形和动态灾害进行定量评估的非侵入式方法","authors":"Majid Khan, Xueqiu He, Da-zhao Song","doi":"10.1190/image2023-3909697.1","DOIUrl":null,"url":null,"abstract":"Summary The escalating demand for deep underground energy sources, driven by the depletion of shallow resources, has raised concerns about the occurrence of dynamic disasters, which pose significant societal risks. In the context of engineering excavation processes, the presence of pre-existing and excavation-induced fractures significantly influences the evolution of complex geological disasters associated with mining activities. Traditional approaches to disaster prediction rely heavily on physical models and numerical simulations. However, these methods often suffer from limitations such as time-consuming and uneconomical drilling tests, as well as restricted coverage. To overcome these challenges, this study introduces a novel methodology that enables comprehensive imaging of the geological response, deformation patterns, and dynamic disaster prediction within the entire minefield of underground engineering works with a special emphasis on steeply inclined and extremely thick coal seams (SIETCS).","PeriodicalId":508373,"journal":{"name":"Third International Meeting for Applied Geoscience & Energy Expanded Abstracts","volume":"132 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A noninvasive approach for quantitative evaluation of geological deformations and dynamic disasters in complex mining environments\",\"authors\":\"Majid Khan, Xueqiu He, Da-zhao Song\",\"doi\":\"10.1190/image2023-3909697.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The escalating demand for deep underground energy sources, driven by the depletion of shallow resources, has raised concerns about the occurrence of dynamic disasters, which pose significant societal risks. In the context of engineering excavation processes, the presence of pre-existing and excavation-induced fractures significantly influences the evolution of complex geological disasters associated with mining activities. Traditional approaches to disaster prediction rely heavily on physical models and numerical simulations. However, these methods often suffer from limitations such as time-consuming and uneconomical drilling tests, as well as restricted coverage. To overcome these challenges, this study introduces a novel methodology that enables comprehensive imaging of the geological response, deformation patterns, and dynamic disaster prediction within the entire minefield of underground engineering works with a special emphasis on steeply inclined and extremely thick coal seams (SIETCS).\",\"PeriodicalId\":508373,\"journal\":{\"name\":\"Third International Meeting for Applied Geoscience & Energy Expanded Abstracts\",\"volume\":\"132 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Meeting for Applied Geoscience & Energy Expanded Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/image2023-3909697.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Meeting for Applied Geoscience & Energy Expanded Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/image2023-3909697.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A noninvasive approach for quantitative evaluation of geological deformations and dynamic disasters in complex mining environments
Summary The escalating demand for deep underground energy sources, driven by the depletion of shallow resources, has raised concerns about the occurrence of dynamic disasters, which pose significant societal risks. In the context of engineering excavation processes, the presence of pre-existing and excavation-induced fractures significantly influences the evolution of complex geological disasters associated with mining activities. Traditional approaches to disaster prediction rely heavily on physical models and numerical simulations. However, these methods often suffer from limitations such as time-consuming and uneconomical drilling tests, as well as restricted coverage. To overcome these challenges, this study introduces a novel methodology that enables comprehensive imaging of the geological response, deformation patterns, and dynamic disaster prediction within the entire minefield of underground engineering works with a special emphasis on steeply inclined and extremely thick coal seams (SIETCS).