减少计量测量误差的统计方法

Marc Gille, Pierre Beaurepaire, N. Gayton, Antoine Dumas, T. Yalamas
{"title":"减少计量测量误差的统计方法","authors":"Marc Gille, Pierre Beaurepaire, N. Gayton, Antoine Dumas, T. Yalamas","doi":"10.1115/1.4064284","DOIUrl":null,"url":null,"abstract":"Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, errors cannot be avoided. Metrology experts are of course aware of it, and able to identify the different sources that contribute to making errors. In this paper, the probability density function of measurement errors is assumed to be given as an input. Very little research has been made in metrology to develop methods that take into account such data. This work deals with a batch of measures and its statistical properties. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes the entire batch. Then a second method is proposed to estimate the true value that is hidden behind each single measure, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Approaches for the Reduction of Measurement Errors in Metrology\",\"authors\":\"Marc Gille, Pierre Beaurepaire, N. Gayton, Antoine Dumas, T. Yalamas\",\"doi\":\"10.1115/1.4064284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, errors cannot be avoided. Metrology experts are of course aware of it, and able to identify the different sources that contribute to making errors. In this paper, the probability density function of measurement errors is assumed to be given as an input. Very little research has been made in metrology to develop methods that take into account such data. This work deals with a batch of measures and its statistical properties. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes the entire batch. Then a second method is proposed to estimate the true value that is hidden behind each single measure, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.\",\"PeriodicalId\":504755,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计量学被广泛应用于制造业,以确定零件的尺寸是否在公差范围内。然而,误差是无法避免的。计量专家当然知道这一点,并能识别造成误差的不同来源。本文假定测量误差的概率密度函数作为输入。计量学领域在开发考虑此类数据的方法方面鲜有研究。这项工作涉及一批测量数据及其统计特性。首先提出了一种方法来修正测量误差对整个批量测量分布的影响。然后提出第二种方法,通过统计方法消除测量误差,从而估算出隐藏在每个测量值背后的真实值。第二种方法以第一种方法的输出知识为基础,并与贝叶斯统计学相结合。这两种方法的相关性将通过两个应用于模拟数据的示例来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Approaches for the Reduction of Measurement Errors in Metrology
Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, errors cannot be avoided. Metrology experts are of course aware of it, and able to identify the different sources that contribute to making errors. In this paper, the probability density function of measurement errors is assumed to be given as an input. Very little research has been made in metrology to develop methods that take into account such data. This work deals with a batch of measures and its statistical properties. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes the entire batch. Then a second method is proposed to estimate the true value that is hidden behind each single measure, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信