Qingshan Yu, Liguo Luo, Göran Edvell, C. Betters, Jin Wei, Simon Ellis, J. Bland-Hawthorn, Sergio Leon-Saval
{"title":"用于天文正电子探测的非周期性多缺口 FBG 滤波器","authors":"Qingshan Yu, Liguo Luo, Göran Edvell, C. Betters, Jin Wei, Simon Ellis, J. Bland-Hawthorn, Sergio Leon-Saval","doi":"10.1117/12.3008044","DOIUrl":null,"url":null,"abstract":"Current astronomical detection of Positronium (Ps) atoms through gamma-ray emission is inherently limited by a 3-degree angular resolution. Alternatively, the triplet state of Ps is capable of producing a recombination spectrum in the near-infrared band, which would provide the potential to increase the angular resolution by a factor of 104 . The most promising signature is the Ps Balmer alpha line (Psα) at 1312.22nm. This observation scheme has never been implemented from ground-based telescopes due to the bright airglow. Now, the FBG-based OH suppression technique presents a promising solution for removing airglow emission lines surrounding the target signature. In this proceeding, we present the design and fabrication details of the first astronomy J-band FBG filters and early results of the OH suppression unit specifically developed for Ps detection.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"27 ","pages":"129650D - 129650D-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aperiodic multi-notch FBG filters for astronomical positronium detection\",\"authors\":\"Qingshan Yu, Liguo Luo, Göran Edvell, C. Betters, Jin Wei, Simon Ellis, J. Bland-Hawthorn, Sergio Leon-Saval\",\"doi\":\"10.1117/12.3008044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current astronomical detection of Positronium (Ps) atoms through gamma-ray emission is inherently limited by a 3-degree angular resolution. Alternatively, the triplet state of Ps is capable of producing a recombination spectrum in the near-infrared band, which would provide the potential to increase the angular resolution by a factor of 104 . The most promising signature is the Ps Balmer alpha line (Psα) at 1312.22nm. This observation scheme has never been implemented from ground-based telescopes due to the bright airglow. Now, the FBG-based OH suppression technique presents a promising solution for removing airglow emission lines surrounding the target signature. In this proceeding, we present the design and fabrication details of the first astronomy J-band FBG filters and early results of the OH suppression unit specifically developed for Ps detection.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"27 \",\"pages\":\"129650D - 129650D-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aperiodic multi-notch FBG filters for astronomical positronium detection
Current astronomical detection of Positronium (Ps) atoms through gamma-ray emission is inherently limited by a 3-degree angular resolution. Alternatively, the triplet state of Ps is capable of producing a recombination spectrum in the near-infrared band, which would provide the potential to increase the angular resolution by a factor of 104 . The most promising signature is the Ps Balmer alpha line (Psα) at 1312.22nm. This observation scheme has never been implemented from ground-based telescopes due to the bright airglow. Now, the FBG-based OH suppression technique presents a promising solution for removing airglow emission lines surrounding the target signature. In this proceeding, we present the design and fabrication details of the first astronomy J-band FBG filters and early results of the OH suppression unit specifically developed for Ps detection.