{"title":"设计反射式菲佐光学合成孔径成像系统","authors":"Wenmao Zhang, Jianfeng Yang, Yi-yi Zhao","doi":"10.1117/12.3007833","DOIUrl":null,"url":null,"abstract":"In the development of astronomy, high spatial resolution imaging technology plays a crucial role in astronomical observations. The introduction of the optical synthetic aperture concept satisfies the demand for high spatial resolution imaging, gradually becoming a novel direction in the advancement of optical interferometry. This study focuses on the investigation of Fizeau-type synthetic aperture imaging system and presents the design and performance analysis of a system based on requirements. The Fizeau-type synthetic aperture imaging system designed in this paper adopts reflective structure. The system operates in the visible light band (400nm~700nm), with a full field of view angle of 0.3°, an entrance pupil diameter of 300mm, and a focal length of 3598 mm. The sub-telescopes adopt the structure of coaxial two-mirror telescope system. The optical delay line adopts a parallel mirror structure. The beam combiner adopts an off-axis three-mirror structure. The performance of each sub-system and the whole system is analyzed. The results demonstrate that the synthetic aperture imaging system enhances the spatial resolution compared with the single sub-aperture system.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"39 10","pages":"129640M - 129640M-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of reflective Fizeau optical synthetic aperture imaging system\",\"authors\":\"Wenmao Zhang, Jianfeng Yang, Yi-yi Zhao\",\"doi\":\"10.1117/12.3007833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the development of astronomy, high spatial resolution imaging technology plays a crucial role in astronomical observations. The introduction of the optical synthetic aperture concept satisfies the demand for high spatial resolution imaging, gradually becoming a novel direction in the advancement of optical interferometry. This study focuses on the investigation of Fizeau-type synthetic aperture imaging system and presents the design and performance analysis of a system based on requirements. The Fizeau-type synthetic aperture imaging system designed in this paper adopts reflective structure. The system operates in the visible light band (400nm~700nm), with a full field of view angle of 0.3°, an entrance pupil diameter of 300mm, and a focal length of 3598 mm. The sub-telescopes adopt the structure of coaxial two-mirror telescope system. The optical delay line adopts a parallel mirror structure. The beam combiner adopts an off-axis three-mirror structure. The performance of each sub-system and the whole system is analyzed. The results demonstrate that the synthetic aperture imaging system enhances the spatial resolution compared with the single sub-aperture system.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"39 10\",\"pages\":\"129640M - 129640M-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3007833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of reflective Fizeau optical synthetic aperture imaging system
In the development of astronomy, high spatial resolution imaging technology plays a crucial role in astronomical observations. The introduction of the optical synthetic aperture concept satisfies the demand for high spatial resolution imaging, gradually becoming a novel direction in the advancement of optical interferometry. This study focuses on the investigation of Fizeau-type synthetic aperture imaging system and presents the design and performance analysis of a system based on requirements. The Fizeau-type synthetic aperture imaging system designed in this paper adopts reflective structure. The system operates in the visible light band (400nm~700nm), with a full field of view angle of 0.3°, an entrance pupil diameter of 300mm, and a focal length of 3598 mm. The sub-telescopes adopt the structure of coaxial two-mirror telescope system. The optical delay line adopts a parallel mirror structure. The beam combiner adopts an off-axis three-mirror structure. The performance of each sub-system and the whole system is analyzed. The results demonstrate that the synthetic aperture imaging system enhances the spatial resolution compared with the single sub-aperture system.