{"title":"利用双波长拉曼光谱检测氘氧化物","authors":"Jiahao Wang, Xiaohua Zhang, Qiushi Liu, Chong Lv, Yanlei Yang, Yun He, Zhixing Gao","doi":"10.1117/12.3007942","DOIUrl":null,"url":null,"abstract":"Detection and identification of hydrogen isotopes and their oxides is a key point in emission monitoring of nuclear facilities. Therefore, the establishment of an accurate and stable identification system for hydrogen isotopes and their oxides has important application value in the management of nuclear facilities. Raman spectroscopy is a non-contact and non-destructive component analysis method. This method is based on inelastic scattering of photons generated in the interaction between laser and matter, and can generate different characteristic signal peaks according to the structure of molecular bonds. Therefore, different hydrogen isotopes and their oxides can be qualitatively analyzed by Raman characteristic peaks, and a certain degree of quantitative results can be obtained by signal intensity and spectral peak information. Based on the self-built dual-wavelength laser Raman spectroscopy system (532 nm and 785 nm), the vibration spectra of D-O chemical bonds in heavy water (D2O) were detected and compared, which provided data support for further analysis and identification of nuclear facility emissions.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"72 ","pages":"129620E - 129620E-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of deuteroxide by dual-wavelength Raman spectroscopy\",\"authors\":\"Jiahao Wang, Xiaohua Zhang, Qiushi Liu, Chong Lv, Yanlei Yang, Yun He, Zhixing Gao\",\"doi\":\"10.1117/12.3007942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and identification of hydrogen isotopes and their oxides is a key point in emission monitoring of nuclear facilities. Therefore, the establishment of an accurate and stable identification system for hydrogen isotopes and their oxides has important application value in the management of nuclear facilities. Raman spectroscopy is a non-contact and non-destructive component analysis method. This method is based on inelastic scattering of photons generated in the interaction between laser and matter, and can generate different characteristic signal peaks according to the structure of molecular bonds. Therefore, different hydrogen isotopes and their oxides can be qualitatively analyzed by Raman characteristic peaks, and a certain degree of quantitative results can be obtained by signal intensity and spectral peak information. Based on the self-built dual-wavelength laser Raman spectroscopy system (532 nm and 785 nm), the vibration spectra of D-O chemical bonds in heavy water (D2O) were detected and compared, which provided data support for further analysis and identification of nuclear facility emissions.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"72 \",\"pages\":\"129620E - 129620E-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3007942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of deuteroxide by dual-wavelength Raman spectroscopy
Detection and identification of hydrogen isotopes and their oxides is a key point in emission monitoring of nuclear facilities. Therefore, the establishment of an accurate and stable identification system for hydrogen isotopes and their oxides has important application value in the management of nuclear facilities. Raman spectroscopy is a non-contact and non-destructive component analysis method. This method is based on inelastic scattering of photons generated in the interaction between laser and matter, and can generate different characteristic signal peaks according to the structure of molecular bonds. Therefore, different hydrogen isotopes and their oxides can be qualitatively analyzed by Raman characteristic peaks, and a certain degree of quantitative results can be obtained by signal intensity and spectral peak information. Based on the self-built dual-wavelength laser Raman spectroscopy system (532 nm and 785 nm), the vibration spectra of D-O chemical bonds in heavy water (D2O) were detected and compared, which provided data support for further analysis and identification of nuclear facility emissions.