用物理信息神经网络解决平流-扩散-反应逆问题

Roberto Mamud, Carlos T. P. Zanini, H. Migon, Antônio J. Silva Neto
{"title":"用物理信息神经网络解决平流-扩散-反应逆问题","authors":"Roberto Mamud, Carlos T. P. Zanini, H. Migon, Antônio J. Silva Neto","doi":"10.5540/03.2023.010.01.0101","DOIUrl":null,"url":null,"abstract":". In this work, two inverse problems related to pollutant dispersion in a river considering the advection-dispersion-reaction equation are studied along with a Neural Network approach. The first inverse problem concerns the estimation of the reaction parameter in an homogeneous equation, and the second one concerns the estimation of source pollution location in the non-homogeneous case. Both inverse problems are solved by two multiplayer perceptron networks: the usual Artificial Neural Network (ANN) and the Physics-Informed Neural Network (PINN), which is a special type of neural network that includes the physical laws that describes the phenomena in its formulation . Numerical experiments related to both inverse problems with ANN and with PINN are presented, demonstrating the feasibility of the proposed approach.","PeriodicalId":274912,"journal":{"name":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","volume":"40 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of advection-diffusion-reaction inverse problems with Physics-Informed Neural Networks\",\"authors\":\"Roberto Mamud, Carlos T. P. Zanini, H. Migon, Antônio J. Silva Neto\",\"doi\":\"10.5540/03.2023.010.01.0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work, two inverse problems related to pollutant dispersion in a river considering the advection-dispersion-reaction equation are studied along with a Neural Network approach. The first inverse problem concerns the estimation of the reaction parameter in an homogeneous equation, and the second one concerns the estimation of source pollution location in the non-homogeneous case. Both inverse problems are solved by two multiplayer perceptron networks: the usual Artificial Neural Network (ANN) and the Physics-Informed Neural Network (PINN), which is a special type of neural network that includes the physical laws that describes the phenomena in its formulation . Numerical experiments related to both inverse problems with ANN and with PINN are presented, demonstrating the feasibility of the proposed approach.\",\"PeriodicalId\":274912,\"journal\":{\"name\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"volume\":\"40 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5540/03.2023.010.01.0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2023.010.01.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.在这项工作中,采用神经网络方法研究了与河流中污染物扩散有关的两个反问题,即平流-扩散-反应方程。第一个逆问题涉及均质方程中反应参数的估算,第二个问题涉及非均质情况下污染源位置的估算。这两个逆问题都是由两个多玩家感知器网络解决的:普通的人工神经网络(ANN)和物理信息神经网络(PINN),后者是一种特殊类型的神经网络,在其表述中包含了描述现象的物理定律。本文介绍了与使用 ANN 和 PINN 的逆问题相关的数值实验,证明了所建议方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of advection-diffusion-reaction inverse problems with Physics-Informed Neural Networks
. In this work, two inverse problems related to pollutant dispersion in a river considering the advection-dispersion-reaction equation are studied along with a Neural Network approach. The first inverse problem concerns the estimation of the reaction parameter in an homogeneous equation, and the second one concerns the estimation of source pollution location in the non-homogeneous case. Both inverse problems are solved by two multiplayer perceptron networks: the usual Artificial Neural Network (ANN) and the Physics-Informed Neural Network (PINN), which is a special type of neural network that includes the physical laws that describes the phenomena in its formulation . Numerical experiments related to both inverse problems with ANN and with PINN are presented, demonstrating the feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信