利用深度学习时间序列技术预测巴拉-曼萨/RJ 市的月降雨量

IF 0.2 Q4 MULTIDISCIPLINARY SCIENCES
Holos Pub Date : 2023-12-18 DOI:10.15628/holos.2023.16340
Vinícius de Azevedo Silva, Mateus Peixoto Oliveira, Francisco Lledo dos Santos
{"title":"利用深度学习时间序列技术预测巴拉-曼萨/RJ 市的月降雨量","authors":"Vinícius de Azevedo Silva, Mateus Peixoto Oliveira, Francisco Lledo dos Santos","doi":"10.15628/holos.2023.16340","DOIUrl":null,"url":null,"abstract":"Precipitation forecasting is essential for sectors such as water resources management and urban planning. In this study, a deep learning model was developed to predict rainfall in Brazilian cities, focusing on the municipality of Barra Mansa, Rio de Janeiro. Four neural network architectures were tested: FCN, Resnet, ResCNN and InceptionTime. Among them, FCN stood out significantly, presenting the lowest error rates and the best overall adjustment. The study highlights the ability of deep learning, especially through the FCN (Fully Convolutional Network - Segmented) architecture, to make accurate predictions and uncover hidden rainfall patterns. Such discoveries have great potential to improve rainfall forecasting systems and assist in decision-making in areas that require accurate climate information.","PeriodicalId":13167,"journal":{"name":"Holos","volume":"126 ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MONTHLY RAINFALL FORECAST IN THE MUNICIPALITY OF BARRA MANSA/RJ USING DEEP LEARNING TIME SERIES TECHNIQUES\",\"authors\":\"Vinícius de Azevedo Silva, Mateus Peixoto Oliveira, Francisco Lledo dos Santos\",\"doi\":\"10.15628/holos.2023.16340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precipitation forecasting is essential for sectors such as water resources management and urban planning. In this study, a deep learning model was developed to predict rainfall in Brazilian cities, focusing on the municipality of Barra Mansa, Rio de Janeiro. Four neural network architectures were tested: FCN, Resnet, ResCNN and InceptionTime. Among them, FCN stood out significantly, presenting the lowest error rates and the best overall adjustment. The study highlights the ability of deep learning, especially through the FCN (Fully Convolutional Network - Segmented) architecture, to make accurate predictions and uncover hidden rainfall patterns. Such discoveries have great potential to improve rainfall forecasting systems and assist in decision-making in areas that require accurate climate information.\",\"PeriodicalId\":13167,\"journal\":{\"name\":\"Holos\",\"volume\":\"126 \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15628/holos.2023.16340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15628/holos.2023.16340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

降水预报对水资源管理和城市规划等部门至关重要。本研究开发了一个深度学习模型,用于预测巴西城市的降雨量,重点是里约热内卢的巴拉曼萨市。测试了四种神经网络架构:FCN、Resnet、ResCNN 和 InceptionTime。其中,FCN 脱颖而出,误差率最低,整体调整效果最佳。这项研究凸显了深度学习的能力,尤其是通过 FCN(全卷积网络--分段)架构进行准确预测和发现隐藏降雨模式的能力。这些发现在改进降雨预报系统和协助需要准确气候信息的地区进行决策方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MONTHLY RAINFALL FORECAST IN THE MUNICIPALITY OF BARRA MANSA/RJ USING DEEP LEARNING TIME SERIES TECHNIQUES
Precipitation forecasting is essential for sectors such as water resources management and urban planning. In this study, a deep learning model was developed to predict rainfall in Brazilian cities, focusing on the municipality of Barra Mansa, Rio de Janeiro. Four neural network architectures were tested: FCN, Resnet, ResCNN and InceptionTime. Among them, FCN stood out significantly, presenting the lowest error rates and the best overall adjustment. The study highlights the ability of deep learning, especially through the FCN (Fully Convolutional Network - Segmented) architecture, to make accurate predictions and uncover hidden rainfall patterns. Such discoveries have great potential to improve rainfall forecasting systems and assist in decision-making in areas that require accurate climate information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holos
Holos MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
5
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信