内半径积的上估计值在单值函数变形定理中的应用

Q3 Mathematics
I. Denega, Yaroslav V. Zabolotnyi
{"title":"内半径积的上估计值在单值函数变形定理中的应用","authors":"I. Denega, Yaroslav V. Zabolotnyi","doi":"10.30970/ms.60.2.138-144","DOIUrl":null,"url":null,"abstract":"In 1934 Lavrentiev solved the problem of maximum ofproduct of conformal radii of two non-overlapping simply connected domains. In the case of three or more points, many authors considered estimates of a more general Mobius invariant of the form$$T_{n}:={\\prod\\limits_{k=1}^nr(B_{k},a_{k})}{\\bigg(\\prod\\limits_{1\\leqslant k<p\\leqslant n}|a_{k}-a_{p}|\\bigg)^{-\\frac{2}{n-1}}},$$where $r(B,a)$ denotes the inner radius of the domain $B$ with respect to the point $a$ (for an infinitely distant point under the corresponding factor we understand the unit).In 1951 Goluzin for $n=3$ obtained an accurate evaluation for $T_{3}$.In 1980 Kuzmina showedthat the problem of the evaluation of $T_{4}$ isreduced to the smallest capacity problem in the certain continuumfamily and obtained the exact inequality for $T_{4}$.No other ultimate results in this problem for $n \\geqslant 5$ are known at present.In 2021 \\cite{Bakhtin2021,BahDen22} effective upper estimates are obtained for $T_{n}$, $n \\geqslant 2$.Among the possible applications of the obtained results in other tasks of the function theory are the so-called distortion theorems.In the paper we consider an application of upper estimates for products of inner radii to distortion theorems for univalent functionsin disk $U$, which map it onto a star-shaped domains relative to the origin.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":"102 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of upper estimates for products of inner radii to distortion theorems for univalent functions\",\"authors\":\"I. Denega, Yaroslav V. Zabolotnyi\",\"doi\":\"10.30970/ms.60.2.138-144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1934 Lavrentiev solved the problem of maximum ofproduct of conformal radii of two non-overlapping simply connected domains. In the case of three or more points, many authors considered estimates of a more general Mobius invariant of the form$$T_{n}:={\\\\prod\\\\limits_{k=1}^nr(B_{k},a_{k})}{\\\\bigg(\\\\prod\\\\limits_{1\\\\leqslant k<p\\\\leqslant n}|a_{k}-a_{p}|\\\\bigg)^{-\\\\frac{2}{n-1}}},$$where $r(B,a)$ denotes the inner radius of the domain $B$ with respect to the point $a$ (for an infinitely distant point under the corresponding factor we understand the unit).In 1951 Goluzin for $n=3$ obtained an accurate evaluation for $T_{3}$.In 1980 Kuzmina showedthat the problem of the evaluation of $T_{4}$ isreduced to the smallest capacity problem in the certain continuumfamily and obtained the exact inequality for $T_{4}$.No other ultimate results in this problem for $n \\\\geqslant 5$ are known at present.In 2021 \\\\cite{Bakhtin2021,BahDen22} effective upper estimates are obtained for $T_{n}$, $n \\\\geqslant 2$.Among the possible applications of the obtained results in other tasks of the function theory are the so-called distortion theorems.In the paper we consider an application of upper estimates for products of inner radii to distortion theorems for univalent functionsin disk $U$, which map it onto a star-shaped domains relative to the origin.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":\"102 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.60.2.138-144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.2.138-144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

1934 年,拉夫连季耶夫解决了两个不重叠的简单相连域的共形半径的最大积问题。在三个或更多点的情况下,许多学者考虑了形式为$$T_{n}的更一般莫比乌斯不变量的估计值:={\prod\limits_{k=1}^nr(B_{k},a_{k})}{\bigg(\prod\limits_{1\leqslant k本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Application of upper estimates for products of inner radii to distortion theorems for univalent functions
In 1934 Lavrentiev solved the problem of maximum ofproduct of conformal radii of two non-overlapping simply connected domains. In the case of three or more points, many authors considered estimates of a more general Mobius invariant of the form$$T_{n}:={\prod\limits_{k=1}^nr(B_{k},a_{k})}{\bigg(\prod\limits_{1\leqslant k
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信