基于巴纳赫空间值的普通和分数神经网络逼近的 q-变形和 λ-参数化 A 广义逻辑函数

G. Anastassiou
{"title":"基于巴纳赫空间值的普通和分数神经网络逼近的 q-变形和 λ-参数化 A 广义逻辑函数","authors":"G. Anastassiou","doi":"10.31926/but.mif.2023.3.65.2.4","DOIUrl":null,"url":null,"abstract":"Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed and λ-parametrized A-generalized logistic function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"15 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-Deformed and λ-parametrized A-generalized logistic function based Banach space valued ordinary and fractional neural network approximation\",\"authors\":\"G. Anastassiou\",\"doi\":\"10.31926/but.mif.2023.3.65.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed and λ-parametrized A-generalized logistic function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.\",\"PeriodicalId\":505295,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"volume\":\"15 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2023.3.65.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2023.3.65.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们研究通过准插值巴拿赫空间值神经网络算子对紧凑区间或所有实线上的巴拿赫空间值连续函数进行单变量定量逼近(普通逼近和分数逼近)。这些近似值是通过建立杰克逊式不等式得出的,该不等式涉及参与函数或其巴纳赫空间值高阶导数的分数导数的连续性模量。我们的算子是通过使用由 q 变形和 λ 参数化 A 广义 logistic 函数生成的密度函数定义的,该函数是一个 sigmoid 函数。近似值是点式的,并且是统一规范的。相关的巴拿赫空间估值前馈神经网络有一个隐藏层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-Deformed and λ-parametrized A-generalized logistic function based Banach space valued ordinary and fractional neural network approximation
Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed and λ-parametrized A-generalized logistic function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信