通过 UPLC-MS/MS 和基因表达研究区分杜鹃花的颜色差异

IF 3.1 3区 农林科学 Q1 HORTICULTURE
Jin-Ying Dai, Xinglin Wang, Xingpan Meng, Xu Zhang, Qihang Zhou, Zhengdong Zhang, Ximin Zhang, Yin Yi, Lunxian Liu, Tie Shen
{"title":"通过 UPLC-MS/MS 和基因表达研究区分杜鹃花的颜色差异","authors":"Jin-Ying Dai, Xinglin Wang, Xingpan Meng, Xu Zhang, Qihang Zhou, Zhengdong Zhang, Ximin Zhang, Yin Yi, Lunxian Liu, Tie Shen","doi":"10.3390/horticulturae9121351","DOIUrl":null,"url":null,"abstract":"Among ornamental plants, the colour of the petals is an important feature. However, the reason for the colour differences of Rhododendron liliiflorum remains unclear. To reveal the differences in the colour of R. liliiflorum, high-efficiency liquid chromatographic collar (UPLC–MS/MS) technology was used to study the yellow and white parts of R. liliiflorum. A total of 1187 metabolites were identified in R. liliiflorum petals, including 339 flavonoid metabolites. Seventy-eight types of flavonoids in these metabolites were found in the yellow and white parts of R. liliiflorum petals, along with 11 other significantly enriched substances. Combining gene expression-related data with differential metabolite data demonstrated effects of enrichment in the flavanonols (fustin), flavonols (epiafzelechin and afzelechin), and flavanones (pinocembrin) of flavonoid biosynthesis; glyccitin, 6″-O-malonylgenistin, and 6-hydroxydaidzein of isoflavonoid biosynthesis; and anthocyanin biosynthesis of malvidin-3-O-galactoside (primulin), delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (keracyanin), which are potentially the contributing factors responsible for the differences in petal colour in R. liliiflorum. This study establishes a connection between the differential metabolites underlying the color differences in the petals of R. liliiflorum and the gene expression in R. liliiflorum. This will provide a foundation for subsequent research on the regulation of flower color in R. liliiflorum and have profound implications for horticultural applications of R. liliiflorum.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"313 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UPLC–MS/MS and Gene Expression Research to Distinguish the Colour Differences of Rhododendron liliiflorum H. Lév\",\"authors\":\"Jin-Ying Dai, Xinglin Wang, Xingpan Meng, Xu Zhang, Qihang Zhou, Zhengdong Zhang, Ximin Zhang, Yin Yi, Lunxian Liu, Tie Shen\",\"doi\":\"10.3390/horticulturae9121351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among ornamental plants, the colour of the petals is an important feature. However, the reason for the colour differences of Rhododendron liliiflorum remains unclear. To reveal the differences in the colour of R. liliiflorum, high-efficiency liquid chromatographic collar (UPLC–MS/MS) technology was used to study the yellow and white parts of R. liliiflorum. A total of 1187 metabolites were identified in R. liliiflorum petals, including 339 flavonoid metabolites. Seventy-eight types of flavonoids in these metabolites were found in the yellow and white parts of R. liliiflorum petals, along with 11 other significantly enriched substances. Combining gene expression-related data with differential metabolite data demonstrated effects of enrichment in the flavanonols (fustin), flavonols (epiafzelechin and afzelechin), and flavanones (pinocembrin) of flavonoid biosynthesis; glyccitin, 6″-O-malonylgenistin, and 6-hydroxydaidzein of isoflavonoid biosynthesis; and anthocyanin biosynthesis of malvidin-3-O-galactoside (primulin), delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (keracyanin), which are potentially the contributing factors responsible for the differences in petal colour in R. liliiflorum. This study establishes a connection between the differential metabolites underlying the color differences in the petals of R. liliiflorum and the gene expression in R. liliiflorum. This will provide a foundation for subsequent research on the regulation of flower color in R. liliiflorum and have profound implications for horticultural applications of R. liliiflorum.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"313 \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae9121351\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae9121351","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

在观赏植物中,花瓣的颜色是一个重要特征。然而,杜鹃花颜色差异的原因仍不清楚。为了揭示杜鹃花颜色的差异,研究人员采用高效液相色谱领(UPLC-MS/MS)技术对杜鹃花的黄色和白色部分进行了研究。共鉴定出 1187 种代谢物,其中包括 339 种黄酮类代谢物。在这些代谢物中,有 78 种黄酮类化合物在百日草花瓣的黄色和白色部分中被发现,另外还有 11 种明显富集的物质。将基因表达相关数据与差异代谢物数据相结合,显示了黄酮类生物合成中的黄烷醇(福斯丁)、黄酮醇(表茴儿茶素和阿夫儿茶素)和黄烷酮(pinocembrin);异黄酮生物合成中的甘草甜素、6″-O-丙二酰基染料木素和 6-羟基染料木素的富集效应;以及花青素生物合成的 malvidin-3-O-半乳糖苷(primulin)、delphinidin-3-O-rutinoside、cyanidin-3-O-glucoside(kuromanin)和 cyanidin-3-O-rutinoside(keracyanin)。花瓣颜色差异的潜在因素。这项研究证实了导致百日草花瓣颜色差异的不同代谢物与百日草花瓣基因表达之间的联系。这将为今后研究 R. liliiflorum 的花色调控奠定基础,并对 R. liliiflorum 的园艺应用产生深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UPLC–MS/MS and Gene Expression Research to Distinguish the Colour Differences of Rhododendron liliiflorum H. Lév
Among ornamental plants, the colour of the petals is an important feature. However, the reason for the colour differences of Rhododendron liliiflorum remains unclear. To reveal the differences in the colour of R. liliiflorum, high-efficiency liquid chromatographic collar (UPLC–MS/MS) technology was used to study the yellow and white parts of R. liliiflorum. A total of 1187 metabolites were identified in R. liliiflorum petals, including 339 flavonoid metabolites. Seventy-eight types of flavonoids in these metabolites were found in the yellow and white parts of R. liliiflorum petals, along with 11 other significantly enriched substances. Combining gene expression-related data with differential metabolite data demonstrated effects of enrichment in the flavanonols (fustin), flavonols (epiafzelechin and afzelechin), and flavanones (pinocembrin) of flavonoid biosynthesis; glyccitin, 6″-O-malonylgenistin, and 6-hydroxydaidzein of isoflavonoid biosynthesis; and anthocyanin biosynthesis of malvidin-3-O-galactoside (primulin), delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (keracyanin), which are potentially the contributing factors responsible for the differences in petal colour in R. liliiflorum. This study establishes a connection between the differential metabolites underlying the color differences in the petals of R. liliiflorum and the gene expression in R. liliiflorum. This will provide a foundation for subsequent research on the regulation of flower color in R. liliiflorum and have profound implications for horticultural applications of R. liliiflorum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
期刊介绍: Horticulturae (ISSN 2311-7524) is an international, multidisciplinary, peer-reviewed, open access journal focusing on all areas and aspects of temperate to tropical horticulture. It publishes original empirical and theoretical research articles, short communications, reviews, and opinion articles. We intend to encourage scientists to publish and communicate their results concerning all branches of horticulture in a timely manner and in an open venue, after being evaluated by the journal editors and randomly selected independent expert reviewers, so that all articles will never be judged in relation to how much they confirm or criticize the opinions of other researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信