Shuguang Li, K. Guo, Kaili Qin, Tingyao Xie, Lele Zhu, Xi Ye, Zhenbin Lv, Wenbin Lu
{"title":"通过基于可调 MWP 信号和电接收链路的硬件在环仿真演示 MWP 雷达","authors":"Shuguang Li, K. Guo, Kaili Qin, Tingyao Xie, Lele Zhu, Xi Ye, Zhenbin Lv, Wenbin Lu","doi":"10.1117/12.3007820","DOIUrl":null,"url":null,"abstract":"Demonstration of LFMCW radar system by hardware-in-the-loop simulation based on tunable microwave photonics generated radar signal and electric receiving link is presented. The seed signal is given by Direct Digital Synthesis (DDS) with tunable signal wave forms, which can afford the system with different time-width and bandwidth. The microwave photonics electro-optic modulation and photoelectric transformation system turns the seed signal with low-frequency and narrow-bandwidth into the signal by 4 times at frequency carried on the laser through the dualparallel electro-optic modulator, and obtain the high-frequency and broadband radar signal after the photoelectric detector, and then transmit the radar signal into the input port of the hardware-in-the-loop simulator with time delay function. The radar signal is set as different delay corresponding to different transmission distance, such as 1km, 2km, and other distances. After the hardware-in-the-loop simulator with some distance delay, the signal is transmitted from the output ort of the hardware-in-the-loop simulator into the receiver. In the receiving link, the electric de-chirping method is carried out to down convert the radar echo signal. After electric ADC, the ranging data is processed. Two typical wave forms, such as the wave form with 1GHz bandwidth and 2ms pulse width, and the other wave form with 2GHz bandwidth and 8ms are operated through the system respectively. The demonstration by hardware-in-the-loop simulation has been given, and the experimental results show that the range of frequency modulated continuous wave radar based on this system can reach 5 km.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"26 1","pages":"129661X - 129661X-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of MWP radar by hardware-in-the-loop simulation based on tunable MWP generated signal and electric receiving link\",\"authors\":\"Shuguang Li, K. Guo, Kaili Qin, Tingyao Xie, Lele Zhu, Xi Ye, Zhenbin Lv, Wenbin Lu\",\"doi\":\"10.1117/12.3007820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demonstration of LFMCW radar system by hardware-in-the-loop simulation based on tunable microwave photonics generated radar signal and electric receiving link is presented. The seed signal is given by Direct Digital Synthesis (DDS) with tunable signal wave forms, which can afford the system with different time-width and bandwidth. The microwave photonics electro-optic modulation and photoelectric transformation system turns the seed signal with low-frequency and narrow-bandwidth into the signal by 4 times at frequency carried on the laser through the dualparallel electro-optic modulator, and obtain the high-frequency and broadband radar signal after the photoelectric detector, and then transmit the radar signal into the input port of the hardware-in-the-loop simulator with time delay function. The radar signal is set as different delay corresponding to different transmission distance, such as 1km, 2km, and other distances. After the hardware-in-the-loop simulator with some distance delay, the signal is transmitted from the output ort of the hardware-in-the-loop simulator into the receiver. In the receiving link, the electric de-chirping method is carried out to down convert the radar echo signal. After electric ADC, the ranging data is processed. Two typical wave forms, such as the wave form with 1GHz bandwidth and 2ms pulse width, and the other wave form with 2GHz bandwidth and 8ms are operated through the system respectively. The demonstration by hardware-in-the-loop simulation has been given, and the experimental results show that the range of frequency modulated continuous wave radar based on this system can reach 5 km.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"26 1\",\"pages\":\"129661X - 129661X-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3007820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demonstration of MWP radar by hardware-in-the-loop simulation based on tunable MWP generated signal and electric receiving link
Demonstration of LFMCW radar system by hardware-in-the-loop simulation based on tunable microwave photonics generated radar signal and electric receiving link is presented. The seed signal is given by Direct Digital Synthesis (DDS) with tunable signal wave forms, which can afford the system with different time-width and bandwidth. The microwave photonics electro-optic modulation and photoelectric transformation system turns the seed signal with low-frequency and narrow-bandwidth into the signal by 4 times at frequency carried on the laser through the dualparallel electro-optic modulator, and obtain the high-frequency and broadband radar signal after the photoelectric detector, and then transmit the radar signal into the input port of the hardware-in-the-loop simulator with time delay function. The radar signal is set as different delay corresponding to different transmission distance, such as 1km, 2km, and other distances. After the hardware-in-the-loop simulator with some distance delay, the signal is transmitted from the output ort of the hardware-in-the-loop simulator into the receiver. In the receiving link, the electric de-chirping method is carried out to down convert the radar echo signal. After electric ADC, the ranging data is processed. Two typical wave forms, such as the wave form with 1GHz bandwidth and 2ms pulse width, and the other wave form with 2GHz bandwidth and 8ms are operated through the system respectively. The demonstration by hardware-in-the-loop simulation has been given, and the experimental results show that the range of frequency modulated continuous wave radar based on this system can reach 5 km.