飞机扑翼预测计算方法概述

Ekaterina Antimirova, Jiyoung Jung, Zilan Zhang, Aaron Machuca, Grace X. Gu
{"title":"飞机扑翼预测计算方法概述","authors":"Ekaterina Antimirova, Jiyoung Jung, Zilan Zhang, Aaron Machuca, Grace X. Gu","doi":"10.1115/1.4064324","DOIUrl":null,"url":null,"abstract":"Aeroelastic flutter is a dynamically complex phenomenon that has adverse and unstable effects on elastic structures. It is crucial to better predict the phenomenon of flutter within the scope of aircraft structures to improve upon the design of their wings. This review aims to establish fundamental guidelines for flutter analysis across subsonic, transonic, supersonic, and hypersonic flow regimes providing a thorough overview of established analytic, numerical, and reduced-order models as applicable to each flow regime. The review will shed light on the limitations and missing components within the previous literature on these flow regimes by highlighting the challenges involved in simulating flutter. Additionally, popular methods that employ the aforementioned analyses for optimizing wing structures under the effects of flutter, a subject currently garnering significant research attention, are also discussed. Our discussion offers new perspectives that encourages collaborative effort in the area of computational methods for flutter prediction and optimization.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"102 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of computational methods to predict flutter in aircraft\",\"authors\":\"Ekaterina Antimirova, Jiyoung Jung, Zilan Zhang, Aaron Machuca, Grace X. Gu\",\"doi\":\"10.1115/1.4064324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aeroelastic flutter is a dynamically complex phenomenon that has adverse and unstable effects on elastic structures. It is crucial to better predict the phenomenon of flutter within the scope of aircraft structures to improve upon the design of their wings. This review aims to establish fundamental guidelines for flutter analysis across subsonic, transonic, supersonic, and hypersonic flow regimes providing a thorough overview of established analytic, numerical, and reduced-order models as applicable to each flow regime. The review will shed light on the limitations and missing components within the previous literature on these flow regimes by highlighting the challenges involved in simulating flutter. Additionally, popular methods that employ the aforementioned analyses for optimizing wing structures under the effects of flutter, a subject currently garnering significant research attention, are also discussed. Our discussion offers new perspectives that encourages collaborative effort in the area of computational methods for flutter prediction and optimization.\",\"PeriodicalId\":508156,\"journal\":{\"name\":\"Journal of Applied Mechanics\",\"volume\":\"102 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气动弹性扑翼是一种复杂的动态现象,会对弹性结构产生不利和不稳定的影响。在飞机结构范围内更好地预测扑翼现象对改进机翼设计至关重要。本综述旨在为亚音速、跨音速、超音速和高超音速流态的扑翼分析制定基本准则,全面概述适用于每种流态的既定分析、数值和降阶模型。本综述将通过强调模拟扑翼所面临的挑战,阐明以往有关这些流动状态的文献中存在的局限性和缺失的部分。此外,还讨论了采用上述分析方法优化扑翼影响下的机翼结构的常用方法,这是一个目前备受研究关注的课题。我们的讨论提供了新的视角,鼓励在扑翼预测和优化计算方法领域开展合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of computational methods to predict flutter in aircraft
Aeroelastic flutter is a dynamically complex phenomenon that has adverse and unstable effects on elastic structures. It is crucial to better predict the phenomenon of flutter within the scope of aircraft structures to improve upon the design of their wings. This review aims to establish fundamental guidelines for flutter analysis across subsonic, transonic, supersonic, and hypersonic flow regimes providing a thorough overview of established analytic, numerical, and reduced-order models as applicable to each flow regime. The review will shed light on the limitations and missing components within the previous literature on these flow regimes by highlighting the challenges involved in simulating flutter. Additionally, popular methods that employ the aforementioned analyses for optimizing wing structures under the effects of flutter, a subject currently garnering significant research attention, are also discussed. Our discussion offers new perspectives that encourages collaborative effort in the area of computational methods for flutter prediction and optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信