行向和对向 mn-独立随机变量三角形数组的平均换算理论

LÊ Van Thanh, P. Nhu Y
{"title":"行向和对向 mn-独立随机变量三角形数组的平均换算理论","authors":"LÊ Van Thanh, P. Nhu Y","doi":"10.56824/vujs.2023a090","DOIUrl":null,"url":null,"abstract":"This paper establishes a mean convergence theorem for triangular arrays of rowwise and pairwise mn-dependent random variables. Some authors studied limit theorems for sequences of pairwise m-dependent random variables where m is fixed (see, e.g., Quang and Nguyen [Applications of Mathematics, 2016] and Thanh [Bulletin of the Institute of Mathematics Academia Sinica, 2005]). In this paper, we establish a limit theorem for triangular arrays of rowwise and pairwise mn-dependent random variables, where mn may approach infinity as n → ∞. The main theorem extends some results in the literature, including Theorem 3.1 of Chen, Bai and Sung in [Journal of Mathematical Analysis and Applications, 2014].","PeriodicalId":447825,"journal":{"name":"Vinh University Journal of Science","volume":"277 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MEAN CONVERGENCE THEOREM FOR TRIANGULAR ARRAYS OF ROWWISE AND PAIRWISE mn-DEPENDENT RANDOM VARIABLES\",\"authors\":\"LÊ Van Thanh, P. Nhu Y\",\"doi\":\"10.56824/vujs.2023a090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a mean convergence theorem for triangular arrays of rowwise and pairwise mn-dependent random variables. Some authors studied limit theorems for sequences of pairwise m-dependent random variables where m is fixed (see, e.g., Quang and Nguyen [Applications of Mathematics, 2016] and Thanh [Bulletin of the Institute of Mathematics Academia Sinica, 2005]). In this paper, we establish a limit theorem for triangular arrays of rowwise and pairwise mn-dependent random variables, where mn may approach infinity as n → ∞. The main theorem extends some results in the literature, including Theorem 3.1 of Chen, Bai and Sung in [Journal of Mathematical Analysis and Applications, 2014].\",\"PeriodicalId\":447825,\"journal\":{\"name\":\"Vinh University Journal of Science\",\"volume\":\"277 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vinh University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56824/vujs.2023a090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vinh University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56824/vujs.2023a090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了行向和成对 mn 依赖随机变量三角阵列的均值收敛定理。一些学者研究了 m 固定的成对 m 依赖随机变量序列的极限定理(参见 Quang 和 Nguyen [Applications of Mathematics, 2016] 和 Thanh [Bulletin of the Institute of Mathematics Academia, 2005])。在本文中,我们建立了行向和对向 mn 依赖随机变量三角阵列的极限定理,其中 mn 可能随着 n → ∞ 而接近无穷大。主定理扩展了文献中的一些结果,包括陈、白和宋在[数学分析与应用期刊,2014]中的定理 3.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MEAN CONVERGENCE THEOREM FOR TRIANGULAR ARRAYS OF ROWWISE AND PAIRWISE mn-DEPENDENT RANDOM VARIABLES
This paper establishes a mean convergence theorem for triangular arrays of rowwise and pairwise mn-dependent random variables. Some authors studied limit theorems for sequences of pairwise m-dependent random variables where m is fixed (see, e.g., Quang and Nguyen [Applications of Mathematics, 2016] and Thanh [Bulletin of the Institute of Mathematics Academia Sinica, 2005]). In this paper, we establish a limit theorem for triangular arrays of rowwise and pairwise mn-dependent random variables, where mn may approach infinity as n → ∞. The main theorem extends some results in the literature, including Theorem 3.1 of Chen, Bai and Sung in [Journal of Mathematical Analysis and Applications, 2014].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信