{"title":"利用有偏差的 RSS 测量进行无线定位的凸面组合","authors":"Qi Wang, Fei Li, Teng Shao, Chao Xu","doi":"10.1155/2023/8931636","DOIUrl":null,"url":null,"abstract":"Received signal strength- (RSS-) based localization in wireless sensor networks (WSNs) has attracted significant attention due to its advantages of low cost and simple implementation. In practice, RSS measurements may suffer from sensor biases, which deteriorates the localization accuracy. However, most of the existing localization methods are designed for bias-free measurements. In this paper, we propose a convex combination method for RSS localization in the presence of sensor biases. The parameter vector composed of unknown location and sensor biases is estimated simultaneously by using a convex combination of some virtual points. These virtual points form a convex hull, into which the parameter vector falls with large probability. By this, the original nonconvex estimation problem is converted to be convex. Numerical examples demonstrate the superiority of the proposed method in terms of localization accuracy, compared to the existing semidefinite programming (SDP) methods.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":"5 9","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Combination for Wireless Localization Using Biased RSS Measurements\",\"authors\":\"Qi Wang, Fei Li, Teng Shao, Chao Xu\",\"doi\":\"10.1155/2023/8931636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received signal strength- (RSS-) based localization in wireless sensor networks (WSNs) has attracted significant attention due to its advantages of low cost and simple implementation. In practice, RSS measurements may suffer from sensor biases, which deteriorates the localization accuracy. However, most of the existing localization methods are designed for bias-free measurements. In this paper, we propose a convex combination method for RSS localization in the presence of sensor biases. The parameter vector composed of unknown location and sensor biases is estimated simultaneously by using a convex combination of some virtual points. These virtual points form a convex hull, into which the parameter vector falls with large probability. By this, the original nonconvex estimation problem is converted to be convex. Numerical examples demonstrate the superiority of the proposed method in terms of localization accuracy, compared to the existing semidefinite programming (SDP) methods.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8931636\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/8931636","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Convex Combination for Wireless Localization Using Biased RSS Measurements
Received signal strength- (RSS-) based localization in wireless sensor networks (WSNs) has attracted significant attention due to its advantages of low cost and simple implementation. In practice, RSS measurements may suffer from sensor biases, which deteriorates the localization accuracy. However, most of the existing localization methods are designed for bias-free measurements. In this paper, we propose a convex combination method for RSS localization in the presence of sensor biases. The parameter vector composed of unknown location and sensor biases is estimated simultaneously by using a convex combination of some virtual points. These virtual points form a convex hull, into which the parameter vector falls with large probability. By this, the original nonconvex estimation problem is converted to be convex. Numerical examples demonstrate the superiority of the proposed method in terms of localization accuracy, compared to the existing semidefinite programming (SDP) methods.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.