一种新的全局优化积分函数算法及其在数据聚类问题中的应用

Mendel Pub Date : 2023-12-20 DOI:10.13164/mendel.2023.2.162
Ridwan Pandiya, Atina Ahdika, Siti Khomsah, Rima Dias Ramadhani
{"title":"一种新的全局优化积分函数算法及其在数据聚类问题中的应用","authors":"Ridwan Pandiya, Atina Ahdika, Siti Khomsah, Rima Dias Ramadhani","doi":"10.13164/mendel.2023.2.162","DOIUrl":null,"url":null,"abstract":"The filled function method is an approach to finding global minimum points of multidimensional unconstrained global optimization problems. The conventional parametric filled functions have computational weaknesses when they are employed in some benchmark optimization functions. This paper proposes a new integral function algorithm based on the auxiliary function approach. The proposed method can successfully be used to find the global minimum point of a function of several variables. Some testing global optimization problems have been used to show the ability of this recommended method. The integral function algorithm is then implemented to solve the center-based data clustering problem. The results show that the proposed algorithm can solve the problem successfully.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"68 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Integral Function Algorithm for Global Optimization and Its Application to the Data Clustering Problem\",\"authors\":\"Ridwan Pandiya, Atina Ahdika, Siti Khomsah, Rima Dias Ramadhani\",\"doi\":\"10.13164/mendel.2023.2.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The filled function method is an approach to finding global minimum points of multidimensional unconstrained global optimization problems. The conventional parametric filled functions have computational weaknesses when they are employed in some benchmark optimization functions. This paper proposes a new integral function algorithm based on the auxiliary function approach. The proposed method can successfully be used to find the global minimum point of a function of several variables. Some testing global optimization problems have been used to show the ability of this recommended method. The integral function algorithm is then implemented to solve the center-based data clustering problem. The results show that the proposed algorithm can solve the problem successfully.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"68 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2023.2.162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.2.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

填充函数法是一种寻找多维无约束全局优化问题全局最小点的方法。传统的参数填充函数在应用于某些基准优化函数时存在计算上的缺陷。本文提出了一种基于辅助函数方法的新积分函数算法。所提出的方法可成功用于求多个变量函数的全局最小点。本文使用了一些测试性的全局优化问题来展示所推荐方法的能力。随后,积分函数算法被用于解决基于中心的数据聚类问题。结果表明,所推荐的算法可以成功解决该问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Integral Function Algorithm for Global Optimization and Its Application to the Data Clustering Problem
The filled function method is an approach to finding global minimum points of multidimensional unconstrained global optimization problems. The conventional parametric filled functions have computational weaknesses when they are employed in some benchmark optimization functions. This paper proposes a new integral function algorithm based on the auxiliary function approach. The proposed method can successfully be used to find the global minimum point of a function of several variables. Some testing global optimization problems have been used to show the ability of this recommended method. The integral function algorithm is then implemented to solve the center-based data clustering problem. The results show that the proposed algorithm can solve the problem successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信