{"title":"气候变暖条件下新泽西州冬季末和春季的气温变化","authors":"Andra J. Garner, Daniel P. Duran","doi":"10.1175/jamc-d-23-0152.1","DOIUrl":null,"url":null,"abstract":"Large temperature variations in a temperate climate, particularly in late-winter and early spring, can be disruptive for native ecosystems and agricultural crops. As warmer temperatures occur earlier in the year in midlatitude regions due to anthropogenic climate change, springtime temperatures may become less consistent, leading to potential damage to species and crops that are vulnerable to the return of historically cooler temperatures, including Late-Spring Frosts, after an initial warm-up. In this work, we quantify shifting patterns in late-winter and springtime temperature variations at eight sites across New Jersey from 1950-2019. Many sites located along the coast or in the coastal plain experience increases in the number of times the temperature climbs above 15.5°C (60°F), and then falls below freezing (i.e., 0°C, or 32°F). Sites in southern New Jersey (where much of the state’s agriculture is located) experience the most significant (P<0.05) increases in large springtime temperature variations. Across all sites, there is a general increase in both the percentage and magnitude of temperature variations that occur as early as February. Finally, at 75% of sites, day-to-day variation in daily maximum temperature has increased from the 1950s through 2019; day-to-day variation in daily minimum temperatures has increased over the same time at more than half of sites considered. These amplifications in extreme temperature variations indicate the need for both mitigation and adaptation strategies to protect vulnerable crops and ecosystems in the region during this critical time of the year.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late-Winter and Springtime Temperature Variations throughout New Jersey in a Warming Climate\",\"authors\":\"Andra J. Garner, Daniel P. Duran\",\"doi\":\"10.1175/jamc-d-23-0152.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large temperature variations in a temperate climate, particularly in late-winter and early spring, can be disruptive for native ecosystems and agricultural crops. As warmer temperatures occur earlier in the year in midlatitude regions due to anthropogenic climate change, springtime temperatures may become less consistent, leading to potential damage to species and crops that are vulnerable to the return of historically cooler temperatures, including Late-Spring Frosts, after an initial warm-up. In this work, we quantify shifting patterns in late-winter and springtime temperature variations at eight sites across New Jersey from 1950-2019. Many sites located along the coast or in the coastal plain experience increases in the number of times the temperature climbs above 15.5°C (60°F), and then falls below freezing (i.e., 0°C, or 32°F). Sites in southern New Jersey (where much of the state’s agriculture is located) experience the most significant (P<0.05) increases in large springtime temperature variations. Across all sites, there is a general increase in both the percentage and magnitude of temperature variations that occur as early as February. Finally, at 75% of sites, day-to-day variation in daily maximum temperature has increased from the 1950s through 2019; day-to-day variation in daily minimum temperatures has increased over the same time at more than half of sites considered. These amplifications in extreme temperature variations indicate the need for both mitigation and adaptation strategies to protect vulnerable crops and ecosystems in the region during this critical time of the year.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-23-0152.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0152.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Late-Winter and Springtime Temperature Variations throughout New Jersey in a Warming Climate
Large temperature variations in a temperate climate, particularly in late-winter and early spring, can be disruptive for native ecosystems and agricultural crops. As warmer temperatures occur earlier in the year in midlatitude regions due to anthropogenic climate change, springtime temperatures may become less consistent, leading to potential damage to species and crops that are vulnerable to the return of historically cooler temperatures, including Late-Spring Frosts, after an initial warm-up. In this work, we quantify shifting patterns in late-winter and springtime temperature variations at eight sites across New Jersey from 1950-2019. Many sites located along the coast or in the coastal plain experience increases in the number of times the temperature climbs above 15.5°C (60°F), and then falls below freezing (i.e., 0°C, or 32°F). Sites in southern New Jersey (where much of the state’s agriculture is located) experience the most significant (P<0.05) increases in large springtime temperature variations. Across all sites, there is a general increase in both the percentage and magnitude of temperature variations that occur as early as February. Finally, at 75% of sites, day-to-day variation in daily maximum temperature has increased from the 1950s through 2019; day-to-day variation in daily minimum temperatures has increased over the same time at more than half of sites considered. These amplifications in extreme temperature variations indicate the need for both mitigation and adaptation strategies to protect vulnerable crops and ecosystems in the region during this critical time of the year.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.