人工神经网络在膝关节疾病诊断中的应用

Konrad Witkowski, Mikołaj Wieczorek
{"title":"人工神经网络在膝关节疾病诊断中的应用","authors":"Konrad Witkowski, Mikołaj Wieczorek","doi":"10.35784/iapgos.5380","DOIUrl":null,"url":null,"abstract":"Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed that for certain abnormalities our models can achieve up to 90% accuracy.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"41 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS\",\"authors\":\"Konrad Witkowski, Mikołaj Wieczorek\",\"doi\":\"10.35784/iapgos.5380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed that for certain abnormalities our models can achieve up to 90% accuracy.\",\"PeriodicalId\":504633,\"journal\":{\"name\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"volume\":\"41 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/iapgos.5380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以下文章探讨了利用神经网络自动诊断膝关节疾病的问题。我们提出了几种混合神经网络架构,旨在利用从公开数据集获取的 MRI(磁共振成像)图像成功地对异常情况进行分类。为了构建这样的模型组合,我们使用了从 Torchvision 下载的预训练 Alexnet、Resnet18 和 Resnet34。实验表明,对于某些异常情况,我们的模型可以达到 90% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS
Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed that for certain abnormalities our models can achieve up to 90% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信