通过迁移学习优化超声图像分类:微调策略和分类器对预训练内层的影响

Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, A. Jilbab, Abdennaser Bourouhou
{"title":"通过迁移学习优化超声图像分类:微调策略和分类器对预训练内层的影响","authors":"Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, A. Jilbab, Abdennaser Bourouhou","doi":"10.35784/iapgos.4464","DOIUrl":null,"url":null,"abstract":"Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by using a linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategies and the importance of the classifier in transfer learning for ultrasound image classification.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTIMIZING ULTRASOUND IMAGE CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING STRATEGIES AND CLASSIFIER IMPACT ON PRE-TRAINED INNER-LAYERS\",\"authors\":\"Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, A. Jilbab, Abdennaser Bourouhou\",\"doi\":\"10.35784/iapgos.4464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by using a linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategies and the importance of the classifier in transfer learning for ultrasound image classification.\",\"PeriodicalId\":504633,\"journal\":{\"name\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/iapgos.4464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.4464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迁移学习(TL)是一种流行的深度学习技术,用于医学图像分析,尤其是在数据有限的情况下。它利用来自最新模型(SOTA)的预训练知识,并通过微调(FT)将其应用于特定应用。然而,对大型模型进行微调可能非常耗时,而且确定使用哪一层也很有挑战性。本研究探讨了在 ImageNet 上预先训练的五个 SOTA 模型(VGG16、VGG19、ResNet50、ResNet101 和 InceptionV3)的不同微调策略。实验还通过使用线性 SVM 进行分类,研究了分类器的影响。实验在与乳腺癌、甲状腺结节癌和唾液腺癌相关的四个开放式超声数据集上进行。实验结果采用五倍分层交叉验证技术进行评估,并计算了准确率、精确度和召回率等指标。研究结果表明,微调 ResNet50 和 InceptionV3 最后一层的 15%,可以取得良好的效果。使用 SVM 进行分类可使两个表现最好的模型的整体性能进一步提高 6%。这项研究为微调策略以及分类器在超声图像分类的迁移学习中的重要性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMIZING ULTRASOUND IMAGE CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING STRATEGIES AND CLASSIFIER IMPACT ON PRE-TRAINED INNER-LAYERS
Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by using a linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategies and the importance of the classifier in transfer learning for ultrasound image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信