具有模式依赖时变延迟的反应扩散遗传调控网络的非脆弱状态估计

Jiarui Liu, Shuai Song, Yulong Song, Xiaona Song
{"title":"具有模式依赖时变延迟的反应扩散遗传调控网络的非脆弱状态估计","authors":"Jiarui Liu, Shuai Song, Yulong Song, Xiaona Song","doi":"10.20517/ces.2023.32","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of non-fragile state estimation for a class of reaction-diffusion genetic regulatory networks with mode-dependent time-varying delays and Markovian jump parameters. First, the Markov chain with partially unknown probabilities is used in this paper to describe the switching between system modes, which can make the model more generalizable. Moreover, considering the possible gain variations, we design a non-fragile state estimator that makes the estimation performance non-fragile to gain variations, thus guaranteeing the estimation performance. Sufficient conditions that ensure the asymptotic stability of the estimation error can be derived by using the Lyapunov stabilization theory and several inequality treatments. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed estimator design scheme.","PeriodicalId":504274,"journal":{"name":"Complex Engineering Systems","volume":"23 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-fragile state estimation for reaction-diffusion genetic regulatory networks with mode-dependent timevarying delays\",\"authors\":\"Jiarui Liu, Shuai Song, Yulong Song, Xiaona Song\",\"doi\":\"10.20517/ces.2023.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of non-fragile state estimation for a class of reaction-diffusion genetic regulatory networks with mode-dependent time-varying delays and Markovian jump parameters. First, the Markov chain with partially unknown probabilities is used in this paper to describe the switching between system modes, which can make the model more generalizable. Moreover, considering the possible gain variations, we design a non-fragile state estimator that makes the estimation performance non-fragile to gain variations, thus guaranteeing the estimation performance. Sufficient conditions that ensure the asymptotic stability of the estimation error can be derived by using the Lyapunov stabilization theory and several inequality treatments. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed estimator design scheme.\",\"PeriodicalId\":504274,\"journal\":{\"name\":\"Complex Engineering Systems\",\"volume\":\"23 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2023.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有模式依赖时变延迟和马尔可夫跳跃参数的反应扩散遗传调控网络的非脆弱状态估计问题。首先,本文使用部分未知概率的马尔可夫链来描述系统模式之间的切换,这可以使模型更具通用性。此外,考虑到可能的增益变化,我们设计了一种非脆弱状态估计器,使估计性能不受增益变化的影响,从而保证了估计性能。利用李亚普诺夫稳定理论和几种不等式处理方法,可以推导出确保估计误差渐近稳定性的充分条件。最后,通过一个仿真实例证明了所提估计器设计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-fragile state estimation for reaction-diffusion genetic regulatory networks with mode-dependent timevarying delays
This paper investigates the problem of non-fragile state estimation for a class of reaction-diffusion genetic regulatory networks with mode-dependent time-varying delays and Markovian jump parameters. First, the Markov chain with partially unknown probabilities is used in this paper to describe the switching between system modes, which can make the model more generalizable. Moreover, considering the possible gain variations, we design a non-fragile state estimator that makes the estimation performance non-fragile to gain variations, thus guaranteeing the estimation performance. Sufficient conditions that ensure the asymptotic stability of the estimation error can be derived by using the Lyapunov stabilization theory and several inequality treatments. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed estimator design scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信