{"title":"英语词汇学的计算语言学方法","authors":"Fan Yang","doi":"10.62051/wepk6t89","DOIUrl":null,"url":null,"abstract":"Focusing on computational linguistic approaches to English linguistics, this research explores how computational methods can be applied to dissect, understand and utilise the English language. We first looked at text analysis and processing, delving into natural language processing techniques such as text categorisation, sentiment analysis and machine translation, and their application to social media and automated text processing. In the area of lexicography and semantics, we explored how techniques such as distributed word vectors, semantic role labelling and sentiment analysis can deepen our understanding of vocabulary and semantics. We highlight the importance of these techniques in natural language processing tasks such as sentiment analysis and information retrieval. In addition, we focus on cross-language comparative and multilingual research, emphasising how big data and cross-language comparative research can reveal similarities and differences between languages and their implications for global linguistics. Finally, we explore corpus linguistics and big data analytics, highlighting the richness of linguistic data and tools they provide for linguistic research. Overall, this study highlights the importance of computational linguistic approaches to English linguistics and how they have transformed the way linguistics is studied and language technology has evolved. Future research trends will continue to drive the further development of computational linguistics methods, leading to a closer integration of linguistics with big data analytics and computational methods, creating more opportunities for the future of the field of linguistics.","PeriodicalId":509968,"journal":{"name":"Transactions on Computer Science and Intelligent Systems Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Linguistic Approach to English Lexicography\",\"authors\":\"Fan Yang\",\"doi\":\"10.62051/wepk6t89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on computational linguistic approaches to English linguistics, this research explores how computational methods can be applied to dissect, understand and utilise the English language. We first looked at text analysis and processing, delving into natural language processing techniques such as text categorisation, sentiment analysis and machine translation, and their application to social media and automated text processing. In the area of lexicography and semantics, we explored how techniques such as distributed word vectors, semantic role labelling and sentiment analysis can deepen our understanding of vocabulary and semantics. We highlight the importance of these techniques in natural language processing tasks such as sentiment analysis and information retrieval. In addition, we focus on cross-language comparative and multilingual research, emphasising how big data and cross-language comparative research can reveal similarities and differences between languages and their implications for global linguistics. Finally, we explore corpus linguistics and big data analytics, highlighting the richness of linguistic data and tools they provide for linguistic research. Overall, this study highlights the importance of computational linguistic approaches to English linguistics and how they have transformed the way linguistics is studied and language technology has evolved. Future research trends will continue to drive the further development of computational linguistics methods, leading to a closer integration of linguistics with big data analytics and computational methods, creating more opportunities for the future of the field of linguistics.\",\"PeriodicalId\":509968,\"journal\":{\"name\":\"Transactions on Computer Science and Intelligent Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Computer Science and Intelligent Systems Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62051/wepk6t89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Computer Science and Intelligent Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62051/wepk6t89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Computational Linguistic Approach to English Lexicography
Focusing on computational linguistic approaches to English linguistics, this research explores how computational methods can be applied to dissect, understand and utilise the English language. We first looked at text analysis and processing, delving into natural language processing techniques such as text categorisation, sentiment analysis and machine translation, and their application to social media and automated text processing. In the area of lexicography and semantics, we explored how techniques such as distributed word vectors, semantic role labelling and sentiment analysis can deepen our understanding of vocabulary and semantics. We highlight the importance of these techniques in natural language processing tasks such as sentiment analysis and information retrieval. In addition, we focus on cross-language comparative and multilingual research, emphasising how big data and cross-language comparative research can reveal similarities and differences between languages and their implications for global linguistics. Finally, we explore corpus linguistics and big data analytics, highlighting the richness of linguistic data and tools they provide for linguistic research. Overall, this study highlights the importance of computational linguistic approaches to English linguistics and how they have transformed the way linguistics is studied and language technology has evolved. Future research trends will continue to drive the further development of computational linguistics methods, leading to a closer integration of linguistics with big data analytics and computational methods, creating more opportunities for the future of the field of linguistics.