与 LIME 合作,利用机器学习和可解释人工智能技术揭示早期心脏病发作检测的关键预测指标

Prakash Paudel, S. K. Karna, Ruby Saud, L. Regmi, Tara Bahadur Thapa, Mohan Bhandari
{"title":"与 LIME 合作,利用机器学习和可解释人工智能技术揭示早期心脏病发作检测的关键预测指标","authors":"Prakash Paudel, S. K. Karna, Ruby Saud, L. Regmi, Tara Bahadur Thapa, Mohan Bhandari","doi":"10.1145/3629188.3629193","DOIUrl":null,"url":null,"abstract":"The prominence of cardiovascular diseases, particularly heart attacks, as a leading cause of global mortality is highlighted, with an increasing number of deaths attributed to cardiovascular diseases over the years. Amidst these challenges, artificial intelligence (AI) and machine learning (ML) technologies emerge as powerful tools in healthcare. This study conducts a comparative analysis of predictive features extracted from diverse classification algorithms, including AdaBoost Classifier (ABC), Random Forest (RF), Gradient Boosting Classifier(GBC) and Light Gradient-Boosting Machine (LGBM), aiming to identify common patterns in predictive outcomes. LGBM emerges as the standout performer among classification algorithms, boasting a remarkable average training accuracy of 99.33%. Results demonstrate comparable precision, recall, and F1 scores among RF, GB, and LGBM, while ABC lags behind. The study reveals from eXplainable AI technique that consistent attribution of importance to attributes like \"kcm\" and \"troponin\" across all methods for classifying \"Attack\" instances, indicating their pivotal role in prediction. The research underscores the potential clinical application of machine learning for heart attack diagnosis and suggests the adoption of various deep learning techniques to enhance predictive performance.","PeriodicalId":508572,"journal":{"name":"Proceedings of the 10th International Conference on Networking, Systems and Security","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Key Predictors for Early Heart Attack Detection using Machine Learning and Explainable AI Technique with LIME\",\"authors\":\"Prakash Paudel, S. K. Karna, Ruby Saud, L. Regmi, Tara Bahadur Thapa, Mohan Bhandari\",\"doi\":\"10.1145/3629188.3629193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prominence of cardiovascular diseases, particularly heart attacks, as a leading cause of global mortality is highlighted, with an increasing number of deaths attributed to cardiovascular diseases over the years. Amidst these challenges, artificial intelligence (AI) and machine learning (ML) technologies emerge as powerful tools in healthcare. This study conducts a comparative analysis of predictive features extracted from diverse classification algorithms, including AdaBoost Classifier (ABC), Random Forest (RF), Gradient Boosting Classifier(GBC) and Light Gradient-Boosting Machine (LGBM), aiming to identify common patterns in predictive outcomes. LGBM emerges as the standout performer among classification algorithms, boasting a remarkable average training accuracy of 99.33%. Results demonstrate comparable precision, recall, and F1 scores among RF, GB, and LGBM, while ABC lags behind. The study reveals from eXplainable AI technique that consistent attribution of importance to attributes like \\\"kcm\\\" and \\\"troponin\\\" across all methods for classifying \\\"Attack\\\" instances, indicating their pivotal role in prediction. The research underscores the potential clinical application of machine learning for heart attack diagnosis and suggests the adoption of various deep learning techniques to enhance predictive performance.\",\"PeriodicalId\":508572,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Networking, Systems and Security\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Networking, Systems and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3629188.3629193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Networking, Systems and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3629188.3629193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病,尤其是心脏病发作,是导致全球死亡的主要原因之一,这一点十分突出,多年来死于心血管疾病的人数不断增加。面对这些挑战,人工智能(AI)和机器学习(ML)技术成为医疗保健领域的有力工具。本研究对从不同分类算法(包括 AdaBoost Classifier (ABC)、Random Forest (RF)、Gradient Boosting Classifier (GBC) 和 Light Gradient-Boosting Machine (LGBM))中提取的预测特征进行了比较分析,旨在找出预测结果中的共同模式。LGBM 在分类算法中表现突出,平均训练准确率高达 99.33%。结果表明,RF、GB 和 LGBM 的精确度、召回率和 F1 分数相当,而 ABC 则落后。研究揭示了 eXplainable AI 技术在对 "攻击 "实例进行分类的所有方法中对 "kcm "和 "肌钙蛋白 "等属性的重要性的一致归属,表明它们在预测中的关键作用。这项研究强调了机器学习在心脏病发作诊断中的潜在临床应用,并建议采用各种深度学习技术来提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Key Predictors for Early Heart Attack Detection using Machine Learning and Explainable AI Technique with LIME
The prominence of cardiovascular diseases, particularly heart attacks, as a leading cause of global mortality is highlighted, with an increasing number of deaths attributed to cardiovascular diseases over the years. Amidst these challenges, artificial intelligence (AI) and machine learning (ML) technologies emerge as powerful tools in healthcare. This study conducts a comparative analysis of predictive features extracted from diverse classification algorithms, including AdaBoost Classifier (ABC), Random Forest (RF), Gradient Boosting Classifier(GBC) and Light Gradient-Boosting Machine (LGBM), aiming to identify common patterns in predictive outcomes. LGBM emerges as the standout performer among classification algorithms, boasting a remarkable average training accuracy of 99.33%. Results demonstrate comparable precision, recall, and F1 scores among RF, GB, and LGBM, while ABC lags behind. The study reveals from eXplainable AI technique that consistent attribution of importance to attributes like "kcm" and "troponin" across all methods for classifying "Attack" instances, indicating their pivotal role in prediction. The research underscores the potential clinical application of machine learning for heart attack diagnosis and suggests the adoption of various deep learning techniques to enhance predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信