移动物体水槽中的定向循环流动

V. Kovalev
{"title":"移动物体水槽中的定向循环流动","authors":"V. Kovalev","doi":"10.20535/2521-1943.2023.7.3.291259","DOIUrl":null,"url":null,"abstract":"The results of liquid fuel inertial flows numerical modeling in the tanks of the spacecraft during its maneuvering in the Earth's orbit are given. It is shown that the circulations that occur when internal guiding devices are used in the form of widely spaced rigid baffles can be deformed and affect the flow space not covered by them. In addition, the circular moments of inertia of the liquid on the baffles can be controlled by means of the appropriate location of the guide devices in terms of width and distance from the tank wall. The force effects calculation of the moving fluid on the walls and internal structures makes it possible to fairly correctly present the hydrodynamic picture of the of inertial flows development, as well as predict the methods and means of compensation for such disturbances. According to the obtained results of the specified processes simulation in the tanks, it can be stated that the inertial flows of the liquid in the tanks are strongly nonlinear, the properties of which depend on the geometry, the initial conditions for the generation of peak force effects tank on the tank walls and bottoms. The use of internal guiding devices in the flow significantly changes the geometry of wave formations, corrects the coordinates and duration of resonant currents in the tank. The main task is to minimize the mass and dimensions of the baffles with a simultaneous increase in the damping efficiency of resonant flows. In addition, the determination of the power parameters real distribution contributes to the development of the latest, more effective designs of baffles, which will allow more reliable influence on uncontrolled inertial flows in tanks.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":"21 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed circulating flows in tanks of moving objects\",\"authors\":\"V. Kovalev\",\"doi\":\"10.20535/2521-1943.2023.7.3.291259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of liquid fuel inertial flows numerical modeling in the tanks of the spacecraft during its maneuvering in the Earth's orbit are given. It is shown that the circulations that occur when internal guiding devices are used in the form of widely spaced rigid baffles can be deformed and affect the flow space not covered by them. In addition, the circular moments of inertia of the liquid on the baffles can be controlled by means of the appropriate location of the guide devices in terms of width and distance from the tank wall. The force effects calculation of the moving fluid on the walls and internal structures makes it possible to fairly correctly present the hydrodynamic picture of the of inertial flows development, as well as predict the methods and means of compensation for such disturbances. According to the obtained results of the specified processes simulation in the tanks, it can be stated that the inertial flows of the liquid in the tanks are strongly nonlinear, the properties of which depend on the geometry, the initial conditions for the generation of peak force effects tank on the tank walls and bottoms. The use of internal guiding devices in the flow significantly changes the geometry of wave formations, corrects the coordinates and duration of resonant currents in the tank. The main task is to minimize the mass and dimensions of the baffles with a simultaneous increase in the damping efficiency of resonant flows. In addition, the determination of the power parameters real distribution contributes to the development of the latest, more effective designs of baffles, which will allow more reliable influence on uncontrolled inertial flows in tanks.\",\"PeriodicalId\":32423,\"journal\":{\"name\":\"Mechanics and Advanced Technologies\",\"volume\":\"21 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Advanced Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2521-1943.2023.7.3.291259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2023.7.3.291259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了航天器在地球轨道上机动时,其燃料箱中液体燃料惯性流的数值建模结果。结果表明,当使用间距较大的刚性挡板形式的内部导向装置时,发生的循环会发生变形,并影响未被挡板覆盖的流动空间。此外,液体在挡板上的圆惯性矩可以通过引导装置在宽度和与槽壁距离方面的适当位置来控制。通过计算流动液体对罐壁和内部结构的力效应,可以相当准确地呈现惯性流发展的流体力学图景,并预测补偿此类干扰的方法和手段。根据水槽中特定过程的模拟结果,可以说水槽中的液体惯性流具有很强的非线性,其特性取决于水槽的几何形状、水槽壁和水槽底部产生峰值力效应的初始条件。在流动中使用内部导向装置可显著改变波形的几何形状,修正槽中共振电流的坐标和持续时间。主要任务是尽量减少挡板的质量和尺寸,同时提高共振流的阻尼效率。此外,功率参数实际分布的确定有助于开发最新、更有效的障板设计,从而对水箱中的失控惯性流产生更可靠的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directed circulating flows in tanks of moving objects
The results of liquid fuel inertial flows numerical modeling in the tanks of the spacecraft during its maneuvering in the Earth's orbit are given. It is shown that the circulations that occur when internal guiding devices are used in the form of widely spaced rigid baffles can be deformed and affect the flow space not covered by them. In addition, the circular moments of inertia of the liquid on the baffles can be controlled by means of the appropriate location of the guide devices in terms of width and distance from the tank wall. The force effects calculation of the moving fluid on the walls and internal structures makes it possible to fairly correctly present the hydrodynamic picture of the of inertial flows development, as well as predict the methods and means of compensation for such disturbances. According to the obtained results of the specified processes simulation in the tanks, it can be stated that the inertial flows of the liquid in the tanks are strongly nonlinear, the properties of which depend on the geometry, the initial conditions for the generation of peak force effects tank on the tank walls and bottoms. The use of internal guiding devices in the flow significantly changes the geometry of wave formations, corrects the coordinates and duration of resonant currents in the tank. The main task is to minimize the mass and dimensions of the baffles with a simultaneous increase in the damping efficiency of resonant flows. In addition, the determination of the power parameters real distribution contributes to the development of the latest, more effective designs of baffles, which will allow more reliable influence on uncontrolled inertial flows in tanks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信