Haixin Zhao, Xiao-Qiang Jiang, Bo Wang, Xueyu Chen
{"title":"轴承故障特征提取方法:基于随机共振的方形包络谱负熵","authors":"Haixin Zhao, Xiao-Qiang Jiang, Bo Wang, Xueyu Chen","doi":"10.1088/1361-6501/ad1872","DOIUrl":null,"url":null,"abstract":"The early identification of bearing defects has recently attracted increasing attention in the fields of condition monitoring and predictive maintenance because of the critical role of bearings on the reliability and safety of turbomachines. The weak features representing early faults in the vibration signals are often submerged in the environmental noise, which poses a major challenge for the early fault diagnosis of rolling bearings. This study proposes a negative entropy of the square envelope spectrum approach integrated with optimized stochastic resonance-based signal enhancement for accurate early defect detection of rolling element bearings. The proposed method considers the cyclostationarity and impulsivity of the raw signal, as well as its similarity with the enhanced signal, thus reinforcing the characteristic frequency while integrating the regularity of the raw signal to evaluate the stochastic resonance performance. A comparison study with different existing methods using both numerical and experimental data was conducted to illustrate the effectiveness and accuracy of the proposed methodology for early defect detection of rolling element bearings in different locations. The results show that the proposed method improves the fault detection by 3.5 days earlier than other stochastic resonance methods, and produces the best enhancement results for fault detection in the outer race, inner race, and rolling element of bearings, with the increase of characteristic frequency intensity coefficient by 126.3%, 118.1%, and 100.5% compared to traditional envelope signals, respectively.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"80 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing fault feature extraction method: Stochastic resonance-based negative entropy of square envelope spectrum\",\"authors\":\"Haixin Zhao, Xiao-Qiang Jiang, Bo Wang, Xueyu Chen\",\"doi\":\"10.1088/1361-6501/ad1872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early identification of bearing defects has recently attracted increasing attention in the fields of condition monitoring and predictive maintenance because of the critical role of bearings on the reliability and safety of turbomachines. The weak features representing early faults in the vibration signals are often submerged in the environmental noise, which poses a major challenge for the early fault diagnosis of rolling bearings. This study proposes a negative entropy of the square envelope spectrum approach integrated with optimized stochastic resonance-based signal enhancement for accurate early defect detection of rolling element bearings. The proposed method considers the cyclostationarity and impulsivity of the raw signal, as well as its similarity with the enhanced signal, thus reinforcing the characteristic frequency while integrating the regularity of the raw signal to evaluate the stochastic resonance performance. A comparison study with different existing methods using both numerical and experimental data was conducted to illustrate the effectiveness and accuracy of the proposed methodology for early defect detection of rolling element bearings in different locations. The results show that the proposed method improves the fault detection by 3.5 days earlier than other stochastic resonance methods, and produces the best enhancement results for fault detection in the outer race, inner race, and rolling element of bearings, with the increase of characteristic frequency intensity coefficient by 126.3%, 118.1%, and 100.5% compared to traditional envelope signals, respectively.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"80 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1872\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1872","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The early identification of bearing defects has recently attracted increasing attention in the fields of condition monitoring and predictive maintenance because of the critical role of bearings on the reliability and safety of turbomachines. The weak features representing early faults in the vibration signals are often submerged in the environmental noise, which poses a major challenge for the early fault diagnosis of rolling bearings. This study proposes a negative entropy of the square envelope spectrum approach integrated with optimized stochastic resonance-based signal enhancement for accurate early defect detection of rolling element bearings. The proposed method considers the cyclostationarity and impulsivity of the raw signal, as well as its similarity with the enhanced signal, thus reinforcing the characteristic frequency while integrating the regularity of the raw signal to evaluate the stochastic resonance performance. A comparison study with different existing methods using both numerical and experimental data was conducted to illustrate the effectiveness and accuracy of the proposed methodology for early defect detection of rolling element bearings in different locations. The results show that the proposed method improves the fault detection by 3.5 days earlier than other stochastic resonance methods, and produces the best enhancement results for fault detection in the outer race, inner race, and rolling element of bearings, with the increase of characteristic frequency intensity coefficient by 126.3%, 118.1%, and 100.5% compared to traditional envelope signals, respectively.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.