移位斐波那契数字

Adnan Karataş
{"title":"移位斐波那契数字","authors":"Adnan Karataş","doi":"10.35414/akufemubid.1345862","DOIUrl":null,"url":null,"abstract":"Shifted Fibonacci numbers have been examined in the literature in terms of the greatest common divisor, but appropriate definitions and fundamental equations have not been worked on. In this article, we have obtained the Binet formula, which is a fundamental equation used to obtain the necessary element of the shifted Fibonacci number sequence. Additionally, we have obtained many well-known identities such as Cassini, Honsberger, and various other identities for this sequence. Furthermore, summation formulas for shifted Fibonacci numbers have been presented.","PeriodicalId":7433,"journal":{"name":"Afyon Kocatepe University Journal of Sciences and Engineering","volume":"44 S19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted Fibonacci Numbers\",\"authors\":\"Adnan Karataş\",\"doi\":\"10.35414/akufemubid.1345862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shifted Fibonacci numbers have been examined in the literature in terms of the greatest common divisor, but appropriate definitions and fundamental equations have not been worked on. In this article, we have obtained the Binet formula, which is a fundamental equation used to obtain the necessary element of the shifted Fibonacci number sequence. Additionally, we have obtained many well-known identities such as Cassini, Honsberger, and various other identities for this sequence. Furthermore, summation formulas for shifted Fibonacci numbers have been presented.\",\"PeriodicalId\":7433,\"journal\":{\"name\":\"Afyon Kocatepe University Journal of Sciences and Engineering\",\"volume\":\"44 S19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afyon Kocatepe University Journal of Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35414/akufemubid.1345862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afyon Kocatepe University Journal of Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35414/akufemubid.1345862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移位斐波那契数在文献中已从最大公约数的角度进行了研究,但还没有研究出适当的定义和基本方程。在这篇文章中,我们得到了比奈公式,它是用来得到移位斐波那契数列的必要元素的基本方程。此外,我们还获得了许多著名的等差数列,如卡西尼等差数列、洪斯伯格等差数列以及该数列的其他各种等差数列。此外,我们还提出了移位斐波那契数的求和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifted Fibonacci Numbers
Shifted Fibonacci numbers have been examined in the literature in terms of the greatest common divisor, but appropriate definitions and fundamental equations have not been worked on. In this article, we have obtained the Binet formula, which is a fundamental equation used to obtain the necessary element of the shifted Fibonacci number sequence. Additionally, we have obtained many well-known identities such as Cassini, Honsberger, and various other identities for this sequence. Furthermore, summation formulas for shifted Fibonacci numbers have been presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信