{"title":"利用基于广义柔性矩阵的优化技术识别结构损伤","authors":"Qianhui Gao, Zhu Li, Yongping Yu, S. Zheng","doi":"10.1093/jom/ufad047","DOIUrl":null,"url":null,"abstract":"A generalized flexibility matrix–based objective function utilized for structure damage identification is firstly constructed. After transforming the damage identification into a constrained nonlinear least squares optimization problem, the trust-region algorithm is applied to find the solution of the inverse problem in multiple damage cases. Thereinto, the sensitivity analysis of the objective function with respect to the design variables is derived using the Nelson's method. At last, two numerical examples with several damage cases are investigated, including a steel truss bridge model as well as a drilling rig derrick model. Based on the computational results, it is evident that the presented approach provides excellent validity and reliability for the large and complicated engineering structures.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural damage identification using an optimization technique based on generalized flexibility matrix\",\"authors\":\"Qianhui Gao, Zhu Li, Yongping Yu, S. Zheng\",\"doi\":\"10.1093/jom/ufad047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized flexibility matrix–based objective function utilized for structure damage identification is firstly constructed. After transforming the damage identification into a constrained nonlinear least squares optimization problem, the trust-region algorithm is applied to find the solution of the inverse problem in multiple damage cases. Thereinto, the sensitivity analysis of the objective function with respect to the design variables is derived using the Nelson's method. At last, two numerical examples with several damage cases are investigated, including a steel truss bridge model as well as a drilling rig derrick model. Based on the computational results, it is evident that the presented approach provides excellent validity and reliability for the large and complicated engineering structures.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufad047\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Structural damage identification using an optimization technique based on generalized flexibility matrix
A generalized flexibility matrix–based objective function utilized for structure damage identification is firstly constructed. After transforming the damage identification into a constrained nonlinear least squares optimization problem, the trust-region algorithm is applied to find the solution of the inverse problem in multiple damage cases. Thereinto, the sensitivity analysis of the objective function with respect to the design variables is derived using the Nelson's method. At last, two numerical examples with several damage cases are investigated, including a steel truss bridge model as well as a drilling rig derrick model. Based on the computational results, it is evident that the presented approach provides excellent validity and reliability for the large and complicated engineering structures.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.