{"title":"基于 Cosserat Rod 的机器人辅助心脏消融混合动力软机器人动态建模","authors":"Majid Roshanfar, Javad Dargahi, Amir Hooshiar","doi":"10.3390/act13010008","DOIUrl":null,"url":null,"abstract":"Soft robotics has emerged as a promising field due to the unique characteristics offered by compliant and flexible structures. Overcoming the challenge of precise position control is crucial in the development of such systems that require accurate modeling of soft robots. In response, a hybrid-actuated soft robot employing both air pressure and tendons was proposed, modeled, and validated using the dynamic Cosserat rod theory. This approach comprehensively addresses various aspects of deformation, including bending, torsion, shear, and extension. The designed robot was intended for robot-assisted cardiac ablation, a minimally invasive procedure that is used to treat cardiac arrhythmias. Within the framework of the Cosserat model, dynamic equations were discretized over time, and ordinary differential equations (ODEs) were solved at each time step. These equations of motion facilitated the prediction of the robot’s response to different control inputs, such as the air pressure and tension applied to the tendons. Experimental studies were conducted on a physical prototype to examine the accuracy of the model. The experiments covered a tension range of 0 to 3 N for each tendon and an air pressure range of 0 to 40 kPa for the central chamber. The results confirmed the accuracy of the model, demonstrating that the dynamic equations successfully predicted the robot’s motion in response to diverse control inputs.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation\",\"authors\":\"Majid Roshanfar, Javad Dargahi, Amir Hooshiar\",\"doi\":\"10.3390/act13010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft robotics has emerged as a promising field due to the unique characteristics offered by compliant and flexible structures. Overcoming the challenge of precise position control is crucial in the development of such systems that require accurate modeling of soft robots. In response, a hybrid-actuated soft robot employing both air pressure and tendons was proposed, modeled, and validated using the dynamic Cosserat rod theory. This approach comprehensively addresses various aspects of deformation, including bending, torsion, shear, and extension. The designed robot was intended for robot-assisted cardiac ablation, a minimally invasive procedure that is used to treat cardiac arrhythmias. Within the framework of the Cosserat model, dynamic equations were discretized over time, and ordinary differential equations (ODEs) were solved at each time step. These equations of motion facilitated the prediction of the robot’s response to different control inputs, such as the air pressure and tension applied to the tendons. Experimental studies were conducted on a physical prototype to examine the accuracy of the model. The experiments covered a tension range of 0 to 3 N for each tendon and an air pressure range of 0 to 40 kPa for the central chamber. The results confirmed the accuracy of the model, demonstrating that the dynamic equations successfully predicted the robot’s motion in response to diverse control inputs.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act13010008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13010008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation
Soft robotics has emerged as a promising field due to the unique characteristics offered by compliant and flexible structures. Overcoming the challenge of precise position control is crucial in the development of such systems that require accurate modeling of soft robots. In response, a hybrid-actuated soft robot employing both air pressure and tendons was proposed, modeled, and validated using the dynamic Cosserat rod theory. This approach comprehensively addresses various aspects of deformation, including bending, torsion, shear, and extension. The designed robot was intended for robot-assisted cardiac ablation, a minimally invasive procedure that is used to treat cardiac arrhythmias. Within the framework of the Cosserat model, dynamic equations were discretized over time, and ordinary differential equations (ODEs) were solved at each time step. These equations of motion facilitated the prediction of the robot’s response to different control inputs, such as the air pressure and tension applied to the tendons. Experimental studies were conducted on a physical prototype to examine the accuracy of the model. The experiments covered a tension range of 0 to 3 N for each tendon and an air pressure range of 0 to 40 kPa for the central chamber. The results confirmed the accuracy of the model, demonstrating that the dynamic equations successfully predicted the robot’s motion in response to diverse control inputs.
期刊介绍:
Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.