{"title":" 对齐碳纳米管增强复合板的静态屈曲和自由振动分析","authors":"Pham Dinh Nguyen, Do Thi Thu Ha, Duong Manh Tuan","doi":"10.25073/2588-1124/vnumap.4876","DOIUrl":null,"url":null,"abstract":"This work introduces an analysis of the nonlinear buckling and free vibration behavior of polymer plates reinforced with aligned carbon nanotubes using Reddy's third-order shear deformation plate theory and incorporating Theodore von Kármán's geometric nonlinearity. The polymer plates were enhanced with single-walled carbon nanotubes assumed to exhibit either uniform distribution or functionally graded distribution across the thickness. The equations of motion were established through Hamilton’s principle and then solved by the Galerkin method and Airy’s stress function for the composite plates with fully simply supported edges. The investigation focused on assessing the effects of carbon nanotube distribution, volume fraction, and geometrical parameters on the buckling load and fundamental frequency parameters of composite plates through numerical results.","PeriodicalId":303178,"journal":{"name":"VNU Journal of Science: Mathematics - Physics","volume":"21 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static Buckling and Free Vibration Analysis of Aligned CNTs Reinforced Composite Plates\",\"authors\":\"Pham Dinh Nguyen, Do Thi Thu Ha, Duong Manh Tuan\",\"doi\":\"10.25073/2588-1124/vnumap.4876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces an analysis of the nonlinear buckling and free vibration behavior of polymer plates reinforced with aligned carbon nanotubes using Reddy's third-order shear deformation plate theory and incorporating Theodore von Kármán's geometric nonlinearity. The polymer plates were enhanced with single-walled carbon nanotubes assumed to exhibit either uniform distribution or functionally graded distribution across the thickness. The equations of motion were established through Hamilton’s principle and then solved by the Galerkin method and Airy’s stress function for the composite plates with fully simply supported edges. The investigation focused on assessing the effects of carbon nanotube distribution, volume fraction, and geometrical parameters on the buckling load and fundamental frequency parameters of composite plates through numerical results.\",\"PeriodicalId\":303178,\"journal\":{\"name\":\"VNU Journal of Science: Mathematics - Physics\",\"volume\":\"21 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Mathematics - Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1124/vnumap.4876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Mathematics - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1124/vnumap.4876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用 Reddy 的三阶剪切变形板理论,并结合 Theodore von Kármán 的几何非线性,对使用排列整齐的碳纳米管增强的聚合物板的非线性屈曲和自由振动行为进行了分析。假定单壁碳纳米管在整个厚度上呈现均匀分布或功能分级分布,从而增强了聚合物板的强度。通过汉密尔顿原理建立了运动方程,然后通过伽勒金方法和艾里应力函数求解了具有完全简支撑边缘的复合板。研究重点是通过数值结果评估碳纳米管分布、体积分数和几何参数对复合板屈曲载荷和基频参数的影响。
Static Buckling and Free Vibration Analysis of Aligned CNTs Reinforced Composite Plates
This work introduces an analysis of the nonlinear buckling and free vibration behavior of polymer plates reinforced with aligned carbon nanotubes using Reddy's third-order shear deformation plate theory and incorporating Theodore von Kármán's geometric nonlinearity. The polymer plates were enhanced with single-walled carbon nanotubes assumed to exhibit either uniform distribution or functionally graded distribution across the thickness. The equations of motion were established through Hamilton’s principle and then solved by the Galerkin method and Airy’s stress function for the composite plates with fully simply supported edges. The investigation focused on assessing the effects of carbon nanotube distribution, volume fraction, and geometrical parameters on the buckling load and fundamental frequency parameters of composite plates through numerical results.