直接序列扩频信号的参数估计边界

E. Brusin
{"title":"直接序列扩频信号的参数估计边界","authors":"E. Brusin","doi":"10.31854/1813-324x-2023-9-6-25-33","DOIUrl":null,"url":null,"abstract":"The article discusses the problems of direct spread spectrum signal’s parameters estimation and estimation performance analyzing. The achieved estimation variances compared with the corresponding Cramer ‒ Rao bounds as a rule. The proposed approach makes it possible to determine the bounds for signals of various types of modulation and spectral characteristics. The dependences of the Cramer ‒ Rao bounds on the signal-to-noise ratio, the spread spectrum sequence length and the duration of the observation interval are presented.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"643 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Sequence Spread Spectrum Signal’s Parameters Estimation Bounds\",\"authors\":\"E. Brusin\",\"doi\":\"10.31854/1813-324x-2023-9-6-25-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the problems of direct spread spectrum signal’s parameters estimation and estimation performance analyzing. The achieved estimation variances compared with the corresponding Cramer ‒ Rao bounds as a rule. The proposed approach makes it possible to determine the bounds for signals of various types of modulation and spectral characteristics. The dependences of the Cramer ‒ Rao bounds on the signal-to-noise ratio, the spread spectrum sequence length and the duration of the observation interval are presented.\",\"PeriodicalId\":298883,\"journal\":{\"name\":\"Proceedings of Telecommunication Universities\",\"volume\":\"643 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Telecommunication Universities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31854/1813-324x-2023-9-6-25-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2023-9-6-25-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章讨论了直接扩频信号参数估计和估计性能分析问题。所实现的估计方差与相应的 Cramer - Rao 边界进行了规则比较。所提出的方法可以确定各种类型调制和频谱特征信号的界限。文中介绍了克拉默 - 拉奥边界与信噪比、扩频序列长度和观测间隔时间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Sequence Spread Spectrum Signal’s Parameters Estimation Bounds
The article discusses the problems of direct spread spectrum signal’s parameters estimation and estimation performance analyzing. The achieved estimation variances compared with the corresponding Cramer ‒ Rao bounds as a rule. The proposed approach makes it possible to determine the bounds for signals of various types of modulation and spectral characteristics. The dependences of the Cramer ‒ Rao bounds on the signal-to-noise ratio, the spread spectrum sequence length and the duration of the observation interval are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信