环,其上的矩阵可表示为两个潜在矩阵之和

A. Abyzov, D. Tapkin
{"title":"环,其上的矩阵可表示为两个潜在矩阵之和","authors":"A. Abyzov, D. Tapkin","doi":"10.26907/0021-3446-2023-12-90-94","DOIUrl":null,"url":null,"abstract":"This paper investigates conditions under which representability of each element a from the field P as the sum a = f + g, with f q1 = f, g q2 = g and q1, q2 are fixed integers >1, implies a similar representability of each square matrix over the field P. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"1992 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rings, matrices over which are representable as the sum of two potent matrices\",\"authors\":\"A. Abyzov, D. Tapkin\",\"doi\":\"10.26907/0021-3446-2023-12-90-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates conditions under which representability of each element a from the field P as the sum a = f + g, with f q1 = f, g q2 = g and q1, q2 are fixed integers >1, implies a similar representability of each square matrix over the field P. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.\",\"PeriodicalId\":507800,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"volume\":\"1992 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/0021-3446-2023-12-90-94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2023-12-90-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在哪些条件下,场 P 中的每个元素 a 都可以表示为和 a = f + g(f q1 = f,g q2 = g,q1、q2 为大于 1 的固定整数),这意味着场 P 上的每个平方矩阵都具有类似的可表示性。作为应用,我们描述了以 2 为单位的场和交换环,在这些场和交换环上,每个平方矩阵都是两个 4 实矩阵之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rings, matrices over which are representable as the sum of two potent matrices
This paper investigates conditions under which representability of each element a from the field P as the sum a = f + g, with f q1 = f, g q2 = g and q1, q2 are fixed integers >1, implies a similar representability of each square matrix over the field P. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信