论 7 分量时空中的类狄拉克方程和广义克利福德-狄拉克代数

IF 1 Q1 MATHEMATICS
V.M. Simulik
{"title":"论 7 分量时空中的类狄拉克方程和广义克利福德-狄拉克代数","authors":"V.M. Simulik","doi":"10.15330/cmp.15.2.529-542","DOIUrl":null,"url":null,"abstract":"The generalized Dirac equation related to 7-component space-time with one time coordinate and six space coordinates has been introduced. Three 8-component Dirac equations have been derived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac algebra is considered in the Pauli-Dirac representation of $8 \\times 8$ gamma matrices. It is proved that this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic to geometric $\\textit{C}\\ell^{\\texttt{R}}$(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional $\\mathrm{SO}(1,9)$ algebra is derived and the way of its generalization to the $\\mathrm{SO}(m,n)$ algebra is demonstrated. The Klein-Gordon equation in 7-component space-time is considered as well. The way of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is indicated.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"2004 21","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Dirac-like equation in 7-component space-time and generalized Clifford-Dirac algebra\",\"authors\":\"V.M. Simulik\",\"doi\":\"10.15330/cmp.15.2.529-542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized Dirac equation related to 7-component space-time with one time coordinate and six space coordinates has been introduced. Three 8-component Dirac equations have been derived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac algebra is considered in the Pauli-Dirac representation of $8 \\\\times 8$ gamma matrices. It is proved that this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic to geometric $\\\\textit{C}\\\\ell^{\\\\texttt{R}}$(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional $\\\\mathrm{SO}(1,9)$ algebra is derived and the way of its generalization to the $\\\\mathrm{SO}(m,n)$ algebra is demonstrated. The Klein-Gordon equation in 7-component space-time is considered as well. The way of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is indicated.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"2004 21\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.529-542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.529-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了与具有一个时间坐标和六个空间坐标的 7 分量时空相关的广义狄拉克方程。从同一个 256 维克利福德-狄拉克矩阵代数中导出了三个 8 分量狄拉克方程。相应的克利福德-狄拉克代数是在 $8 \times 8$ 伽玛矩阵的保利-狄拉克表示中考虑的。研究证明,这个实数域上的矩阵代数有 256 维基,并且与几何 $\textit{C}\ell^{texttt{R}}$(1,7) 代数同构。推导了 45 维 $\mathrm{SO}(1,9)$ 代数的相应伽马矩阵表示,并证明了其推广到 $\mathrm{SO}(m,n)$ 代数的方法。同时还考虑了 7 分量时空中的克莱因-戈登方程。还指出了相应地考虑麦克斯韦方程和任意自旋方程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Dirac-like equation in 7-component space-time and generalized Clifford-Dirac algebra
The generalized Dirac equation related to 7-component space-time with one time coordinate and six space coordinates has been introduced. Three 8-component Dirac equations have been derived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac algebra is considered in the Pauli-Dirac representation of $8 \times 8$ gamma matrices. It is proved that this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic to geometric $\textit{C}\ell^{\texttt{R}}$(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional $\mathrm{SO}(1,9)$ algebra is derived and the way of its generalization to the $\mathrm{SO}(m,n)$ algebra is demonstrated. The Klein-Gordon equation in 7-component space-time is considered as well. The way of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is indicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信